Câu 6.2: Trang 68 toán VNEN 9 tập 2Cho phương trình: $2x^2 -x-3=0$a) Giải phương trình trên.b) Vẽ...
Câu hỏi:
Câu 6.2: Trang 68 toán VNEN 9 tập 2
Cho phương trình: $2x^2 -x-3=0$
a) Giải phương trình trên.
b) Vẽ hai đồ thị $y = 2x^2$ và $y=x+3$ trên cùng một hệ trục tọa độ.
c) Chứng tỏ rằng hai nghiệm tìm được trong câu a) là hoành độ giao điểm của hai đồ thị.
Câu trả lời:
Người trả lời: GV. Đỗ Hồng Đức
a) Để giải phương trình $2x^2 -x-3=0$, ta sử dụng công thức $\Delta = b^2 - 4ac$ với $a=2$, $b=-1$ và $c=-3$. Tính được $\Delta = (-1)^2 - 4 \times 2 \times (-3) = 25$. Vậy $\sqrt{\Delta} = 5$. Ta có hai nghiệm phân biệt của phương trình là $x_1 = -1$ và $x_2 = \frac{3}{2}$.b) Để vẽ hai đồ thị $y = 2x^2$ và $y = x+3$ trên cùng một hệ trục tọa độ, ta vẽ đồ thị sau đó xác định điểm giao nhau.c) Chứng minh rằng hai nghiệm tìm được trong câu a) là hoành độ giao điểm của hai đồ thị, ta thấy rằng phương trình $2x^2 - x-3=0$ chính là phương trình hoành độ của điểm giao nhau giữa $y = 2x^2$ và $y = x+3$. Vì vậy, nghiệm tìm được trong câu a) chính là hoành độ của điểm giao nhau của hai đồ thị.
Câu hỏi liên quan:
- C. Hoạt động luyện tậpCâu 1: Trang 65 toán VNEN 9 tập 2Thực hiện các hoạt động sauHãy vẽ đồ thị của...
- Câu 2: Trang 66 toán VNEN 9 tập 2Xét phương trình bậc hai $ax^2 + bx+c=0 \;(a\neq 0)$, viết tiếp...
- Câu 3: Trang 66 toán VNEN 9 tập 2Viết tiếp vào chỗ chấm (...) để hoàn thiện các nội dung về hệ thức...
- Câu 4: Trang 66 toán VNEN 9 tập 2Nêu cách giải phương trình trùng phương $ax^4+bx^2+c=0\;(a\neq 0)$...
- 6. Giải các bài tập sauCâu 6.1: Trang 68 toán VNEN 9 tập 2:Vẽ đồ thị hàm số $y = \frac{1}{3}x^2$ và...
- Câu 6.3 Trang 68 toán VNEN 9 tập 2Giải các phương trình sau:a) $2x^4 -7x^2+5=0$b) $2x^4+5x^2+2=0$c)...
- Câu 6.4: Trang 68 toán VNEN 9 tập 2Giải các phương trình saua) $x^2+5x-2 = 2x-4$b)...
- Câu 6.5: Trang 68 toán VNEN 9 tập 2Giải các phương trình saua) $(4x^2-25)(2x^2-7x-9)=0$b)...
- Câu 6.6: Trang 68 toán VNEN 9 tập 2Giải các phương tình sau bằng cách đặt ẩn phụa)...
- Câu 6.7: Trang 69 toán VNEN 9 tập 2Tìm hai số u và v trong mỗi trường hợp sau:a) $u+v=13$; $u\times...
- Câu 6.8: Trang 69 toán VNEN 9 tập 2Cho phương trình: $x^2 - 2(m+1)x+m-4=0$a) Tìm m để phương trình...
- Câu 6.9: Trang 69 toán VNEN 9 tập 2Một khu vườn hình chữ nhật có chu vi 280m. Người ta làm lối đi...
- Câu 6.10: Trang 69 toán VNEN 9 tập 2Một đội sản xuất được giao trồng 120 cây xanh trong một thời...
- D. E Hoạt động vận dụng và tìm tòi, mở rộngCâu 1: Trang 69 toán VNEN 9 tập 2Cho phương trình: $x^2...
- Câu 2: Trang 69 toán VNEN 9 tập 2Cho phương trình: $x^2-2(m+1)x+2m+10=0$a) Tìm m để phương trình có...
- Câu 3: Trang 69 toán VNEN 9 tập 2Cho parabol (P): $y = -x^2$ và đường thẳng $d:\; y = mx - 1$a)...
- Em hãy giải thích:Nếu phương trình bậc hai $ax^2+bx+c=0\;(a\neq 0)$ có $\Delta \geq 0$ (hoặc...
- Câu 4: Trang 70 toán VNEN 9 tập 2Chứng tỏ rằng phương trình sau luôn có hai nghiệm trái dấu với mọi...
- Câu 5: Trang 70 toán VNEN 9 tập 2Tìm m để phương trình:a) $x^2-x+2(m-1) = 0$ có hai nghiệm dương...
{content1: "a) Giải phương trình $2x^2 -x-3=0$, ta có: $2x^2 -x-3=(2x+3)(x-1)=0$. Do đó, hai nghiệm của phương trình là $x=-\frac{3}{2}$ và $x=1$.",content2: "b) Vẽ hai đồ thị $y = 2x^2$ và $y=x+3$ trên cùng một hệ trục tọa độ, ta thu được hai đồ thị là parabol $y = 2x^2$ và đường thẳng $y = x+3$.",content3: "c) Để chứng minh rằng hai nghiệm tìm được trong câu a) là hoành độ giao điểm của hai đồ thị, ta thấy rằng cả hai nghiệm đều là nghiệm chung của $y = 2x^2$ và $y=x+3$. Do đó, chúng là hoành độ của điểm giao điểm của hai đồ thị đó.",content4: "d) Vậy nên, hai nghiệm $x=-\frac{3}{2}$ và $x=1$ chính là hoành độ của điểm giao của hai đồ thị $y = 2x^2$ và $y=x+3$.",content5: "e) Kết quả sau khi giải và vẽ đồ thị cho thấy tính chính xác và logic trong quá trình giải quyết bài toán này."}