Câu 4: Trang 53 sách toán VNEN lớp 9 tập 2Tìm hai số u và v trong mỗi trường hợp sau:a) $u + v =...
Câu hỏi:
Câu 4: Trang 53 sách toán VNEN lớp 9 tập 2
Tìm hai số u và v trong mỗi trường hợp sau:
a) $u + v = -8;\;u\times v = 7$
b) $u + v = \frac{1}{2};\;u\times v = -\frac{15}{2}$
c) $u - v = 5;\;u\times v = -4$
Câu trả lời:
Người trả lời: GV. Đỗ Văn Huy
Để giải câu hỏi trên, ta có thể thực hiện theo các bước sau đây:a) $u + v = -8$ và $u\times v = 7$Đặt $u = x$ và $v = y$, ta được hệ phương trình:\[\begin{cases}x + y = -8 \\xy = 7\end{cases}\]Từ đó, suy ra $x$ và $y$ là nghiệm của phương trình $t^2 + 8t + 7 = 0$. Giải phương trình ta được $t_1 = -1$ và $t_2 = -7$. Vậy hai số cần tìm là $u = -1$ và $v = -7$.b) $u + v = \frac{1}{2}$ và $u\times v = -\frac{15}{2}$Đặt $u = m$ và $v = n$, ta được hệ phương trình:\[\begin{cases}m + n = \frac{1}{2} \\mn = -\frac{15}{2}\end{cases}\]Từ đó, suy ra $m$ và $n$ là nghiệm của phương trình $t^2 - \frac{1}{2}t - \frac{15}{2} = 0$. Giải phương trình ta được $t_1 = \frac{3}{2}$ và $t_2 = -5$.Vậy hai số cần tìm là $u = \frac{3}{2}$ và $v = -5$.c) $u - v = 5$ và $u\times v = -4$Đặt $u = p$ và $v = q$, ta được hệ phương trình:\[\begin{cases}p - q = 5 \\pq = -4\end{cases}\]Từ đó, suy ra $p$ và $q$ là nghiệm của phương trình $t^2 - 5t - 4 = 0$. Giải phương trình ta được $t_1 = 1$ và $t_2 = 4$.Vậy hai số cần tìm là $u = 1$ và $v = -4$ hoặc $u = 4$ và $v = -1$.
Câu hỏi liên quan:
- C. Hoạt động luyện tậpCâu 1: Trang 52 sách toán VNEN lớp 9 tập 2Không giải phương trình, dùng hệ...
- Câu 2: Trang 53 sách toán VNEN lớp 9 tập 2Tìm các giá trị của m để mỗi phương trình sau có nghiệm,...
- Câu 3: Trang 53 sách toán VNEN lớp 9 tập 2Tính nhẩm các nghiệm của mỗi phương trình sau:a) $1,3x^2...
- Câu 5: Trang 53 sách toán VNEN lớp 9 tập 2Lập phương trình bậc hai có hai nghiệm là hia số được cho...
- Câu 6: Sách toán VNEN lớp 9 tập 2Cho phương trình $x^2 - 5x + 3 = 0$. Gọi $x_1$; $x_2$ là hai...
- Câu 7: Trang 53 sách toán VNEN lớp 9 tập 2Cho phương trình $2x^2 - x - 15 = 0$. Kí hiệu $x_1,\,x_2$...
- D. E Hoạt động vận dụng và tìm tòi, mở rộngCâu 1: Trang 53 sách toán VNEN lớp 9 tập 2Cho phương...
- Câu 2: Trang 54 sách toán VNEN lớp 9 tập 2Cho phương trình: $x^2 - (2a - 1)x - 4a - 3 = 0$a) Chứng...
- Câu 3: Trang 54 sách toán VNEN lớp 9 tập 2Cho phương trình: $x^2 - 2(m - 2)x + m^2 + 2m - 3 = 0$....
Để kiểm tra kết quả, ta có thể substitude các cặp số u và v vào hệ phương trình ban đầu để xem xem kết quả đúng hay không.
Vậy trong các trường hợp trên, ta có các cặp số u và v lần lượt là (-1, -7), (1/2, -7/2) và (2, -3).
Trong trường hợp c, ta có hệ phương trình u - v = 5 và u*v = -4. Giải hệ phương trình này ta có u = 2 và v = -3.
Trong trường hợp b, ta có hệ phương trình u + v = 1/2 và u*v = -15/2. Giải hệ phương trình này ta có u = 1/2 và v = -7/2.
Trong trường hợp a, ta có hệ phương trình u + v = -8 và u*v = 7. Giải hệ phương trình này ta có u = -1 và v = -7.