Câu 4: Trang 33 sách toán VNEN lớp 9 tập 2Trên mặt phẳng tọa độ (hình 8) có điểm M(2; 1) thuộc đồ...

Câu hỏi:

Câu 4: Trang 33 sách toán VNEN lớp 9 tập 2

Giải câu 4 trang 33 sách toán VNEN lớp 9 tập 2

Trên mặt phẳng tọa độ (hình 8) có điểm M(2; 1) thuộc đồ thị hàm số $y = ax^2 (a \neq 0)$.

a) Tìm hệ số a.

b) Điểm A(3; 6) có thuộc đồ thị hàm số trên hay không?

c) Hãy tìm thêm hai điểm nữa (không kể điểm O) thuộc đồ thị hàm số trên và vẽ đồ thị

Câu trả lời:
Người trả lời: GV. Đỗ Đăng Linh
Có thể tìm thêm hai điểm nữa thuộc đồ thị hàm số bằng cách chọn hai giá trị x khác nhau, tính y tương ứng và vẽ đồ thị.

Câu trả lời chi tiết:
a) Để tìm hệ số a, ta thay tọa độ của điểm M(2; 1) vào phương trình hàm số: $1 = a \times 2^2$. Từ đó suy ra $a = \frac{1}{4}$. Vậy hàm số cần tìm là $y = \frac{1}{4}x^2$.

b) Để xác định xem điểm A(3; 6) có thuộc đồ thị hàm số đã tìm được hay không, ta thay tọa độ của điểm A vào phương trình hàm số: $6 \neq \frac{1}{4} \times 3^2$. Do $6 \neq \frac{9}{4}$ nên điểm A không thuộc đồ thị hàm số.

c) Để tìm hai điểm nữa thuộc đồ thị hàm số, ta có thể chọn hai giá trị x khác nhau, tính y tương ứng và vẽ đồ thị. Ví dụ chọn x = 0 và x = -2, ta có các điểm thuộc đồ thị là O(0; 0) và (-2; 1). Vẽ đồ thị hàm số y = $\frac{1}{4}x^2$ thì ta có đồ thị như sau:

Nhìn vào đồ thị, ta thấy các điểm M(2; 1), O(0; 0), A(3; 6) và B(-2; 1) đều thực sự thuộc đồ thị hàm số đã cho.
Bình luận (4)

Khánh Hân

Sau khi tìm được các điểm M, A, B và C thuộc đồ thị hàm số y = ax^2, ta có thể vẽ đồ thị thông qua việc nối các điểm trên mặt phẳng tọa độ.

Trả lời.

Huyền Trần

c) Để tìm thêm hai điểm thuộc đồ thị hàm số y = ax^2, ta có thể chọn các điểm có tọa độ nguyên khác tọa độ của điểm M và điểm A. Ví dụ điểm B(1;1) và điểm C(4;4).

Trả lời.

Trần Thị Phương

b) Để kiểm tra xem điểm A(3;6) có thuộc đồ thị hàm số y = ax^2 hay không, ta thay vào tọa độ của điểm A vào phương trình y = ax^2 với a = 1/4. Ta được 6 = (1/4)*3^2 không xác định, do đó điểm A không thuộc đồ thị hàm số trên.

Trả lời.

pham dat

a) Để tìm hệ số a, ta thay vào tọa độ của điểm M vào phương trình y = ax^2. Ta được 1 = a*2^2 => a = 1/4.

Trả lời.
Nhấn vào đây để đánh giá
Thông tin người gửi
0.24331 sec| 2181.93 kb