Câu 3: Trang 14 sách VNEN 9 tập 1Biểu diễn dưới dạng thương của hai căn bậc...
Câu hỏi:
Câu 3: Trang 14 sách VNEN 9 tập 1
Biểu diễn dưới dạng thương của hai căn bậc hai:
a) $\sqrt{\frac{3a}{b}}$ với a < 0, b < 0 ; b) $\sqrt{\frac{a}{xy}}$ với a < 0, x < 0, y > 0.
Câu trả lời:
Người trả lời: GV. Đỗ Thị Việt
Để giải câu hỏi trên, ta có thể sử dụng tính chất của căn bậc hai.1. Với câu a:Với a < 0, b < 0 thì $\sqrt{\frac{3a}{b}}$ = $\frac{\sqrt{-3a}}{\sqrt{-b}}$2. Với câu b:Với a < 0, x < 0, y > 0 thì xy < 0$\sqrt{\frac{a}{xy}}$ = $\frac{\sqrt{-a}}{\sqrt{-xy}}$Vậy câu trả lời cho câu hỏi trên là:a) $\sqrt{\frac{3a}{b}}$ = $\frac{\sqrt{-3a}}{\sqrt{-b}}$b) $\sqrt{\frac{a}{xy}}$ = $\frac{\sqrt{-a}}{\sqrt{-xy}}$
Câu hỏi liên quan:
- C. HOẠT ĐỘNG LUYỆN TẬPCâu 1: Trang 13 sách VNEN 9 tập 1Tính:a)$\sqrt{\frac{1,44}{3,61}}$...
- Câu 2: Trang 13 sách VNEN 9 tập 1Tính:a) $\frac{\sqrt{245}}{\sqrt{5}}$ ; ...
- Câu 3: Trang 14 sách VNEN 9 tập 1Tính:a)$\sqrt{\frac{61^{2} - 60^{2}}{81}}$ ; ...
- Câu 4: Trang 14 sách VNEN 9 tập 1Tìm số x không âm, biết:a) 9 - 4$\sqrt{x}$ = 1 ; ...
- D.E. HOẠT ĐỘNG VẬN DỤNG và TÌM TÒI, MỞ RỘNGCâu 1: Trang 14 sách VNEN 9 tập 1Đọc sơ đồ sau rồi phát...
- Câu 2: Trang 14 sách VNEN 9 tập 1Tính:a)$\sqrt{3\frac{22}{49}}$ ; ...
{ "content1": "Để biểu diễn dưới dạng thương của hai căn bậc hai, ta thực hiện các bước sau đây:", "content2": "a) Với biểu thức $\sqrt{\frac{3a}{b}}$ với a < 0, b < 0, chúng ta có thể phân tử và mẫu căn bậc hai để đồng mẫu. Khi đó, biểu thức trở thành $\frac{\sqrt{3a}}{\sqrt{b}}$", "content3": "b) Với biểu thức $\sqrt{\frac{a}{xy}}$ với a < 0, x < 0, y > 0, chúng ta cũng thực hiện tương tự như trường hợp trên. Kết quả sẽ là $\frac{\sqrt{a}}{\sqrt{xy}}$", "content4": "Như vậy, sau khi biểu diễn dưới dạng thương, chúng ta có thể rút gọn được biểu thức và dễ dàng tính toán tiếp theo.", "content5": "Việc đưa ra biểu diễn dưới dạng thương của hai căn bậc hai giúp chúng ta dễ dàng thực hiện các phép tính toán hơn, đồng thời giúp hiểu rõ hơn về tính chất của căn bậc hai.", "content6": "Để xử lý các trường hợp với số âm trong căn bậc hai, chúng ta cần tuân thủ các quy tắc cơ bản và không được làm sai trong quá trình biểu diễn và tính toán."}