2.8.Ta sẽ “lập luận” bằng quy nạp toán học đề chỉ ra rằng: “Mọi con mèo đều có cùng màu”. Ta gọi...
2.8.Ta sẽ “lập luận” bằng quy nạp toán học đề chỉ ra rằng: “Mọi con mèo đều có cùng màu”. Ta gọi P(n) với n nguyên dương là mệnh đề sau: “Mọi con mèo trong một đàn gồm n con đều có cùng màu”.
Bước 1. Với n = 1 thì mệnh đề P(1) là “Mọi con mèo trong một đàn gồm 1 con đều có cùng màu”. Hiền nhiên mệnh đề này là đúng!
Bước 2. Giả sử P(k) đúng với một số nguyên dương k nào đó. Xét một đàn mèo gồm k + 1 con. Gọi chúng là M1, M2, ..., Mk + 1. Bỏ con mèo Mk + 1 ra khỏi đàn, ta nhận được một đàn mèo gồm k con là M1, M2, ... , Mk. Theo giả thiết quy nạp, các con mèo có cùng màu. Bây giờ, thay vì bỏ con mèo Mk + 1 ta bỏ con mèo để có đàn mèo gồm k con là M2, M3, ..., Mk + 1. Vẫn theo giả thiết quy nạp thì các con mèo M2, M3, ..., Mk + 1 có cùng màu. Cuối cùng, đưa con mèo M1 trở lại đàn để có đàn mèo ban đầu. Theo các lập luận trên: các con mèo M1, M2, ..., Mk có cùng màu và các con mèo M2, M3, ..., Mk + 1 có cùng màu. Từ đó suy ra tất cả các con mèo M1, M2, ... , Mk + 1 đều có cùng màu.
Vậy, theo nguyên lí quy nạp thì P(n) đúng với mọi số nguyên dương n. Nói riêng, nếu gọi N là số mèo hiện tại trên Trái Đất thi việc P(N) đúng cho thấy tất cả các con mèo (trên Trái Đất) đều có cùng màu!
Tất nhiên là ta có thề tìm được các con mèo khác màu nhau! Theo em thì “lập luận” trên đây sai ở chỗ nào?
- 1.PHƯƠNG PHÁP QUY NẠP TOÁN HỌCHoạt động 1: Hãy quan sát các đẳng thức sau:Có nhận xét gì về các số...
- Hoạt động 2:Xét đa thức p(n) = n2– n +41.a)Hãy tính p(1), p(2), p(3), p(4),...
- Luyện tập 1:Chứng minh rằng với mọi số tự nhiên n≥ 1, ta có
- Luyện tập 2:Chứng minh rằng với mọi số tự nhiên n≥ 2, ta có đằng thức:
- 2.MỘT SỐ ỨNG DỤNG KHÁC CỦA PHƯƠNG PHÁP QUY NẠP TOÁN HỌCVận dụng:Lãi suất gửi tiết kiệm trong...
- BÀI TẬP2.1.Sử dụng phương pháp quy nạp toán học, chứng minh các đẳng thức sau đúng với mọi số tự...
- 2.2.Mỗi khẳng định sau là đủng hay sai? Nếu em nghĩ là nó đủng, hãy chứng minh nó. Nếu em...
- 2.3.Chứng minh rằng$n^{3}$– n + 3 chia hết cho 3 với mọi số tự nhiên n ≥ 1.
- 2.4.Chứng minh rằng$n^{2}$– n + 41 là số lẻ với mọi số nguyên dương n.
- 2.5.Chứng minh rằng nếu x > –1 thì$(1+x)^{n}$≥ 1+ nx với mọi số tự nhiên n.
- 2.6.Cho tổnga) Tính S1, S2, S3.b) Dự đoán công thức tính tồng Snvà chứng minh bằng quy...
- 2.7.Sừ dụng phương pháp quy nạp toán học, chứng minh rằng số đường chéo của một đa giác n cạnh (n ≥...