Bài tập 2. Lập phương trình đường tròn (C) trong các trường hợp sau:a. (C) có tâm I(1; 5) và có bán...

Câu hỏi:

Bài tập 2. Lập phương trình đường tròn (C) trong các trường hợp sau:

a. (C) có tâm I(1; 5) và có bán kính r = 4;

b. (C) có đường kính MN với M(3; -1) và N(9; 3);

c. (C) có tâm I(2; 1) và tiếp xúc với đường thẳng $5x - 12y + 11 = 0$;

d. (C) có tâm A(1; -2) và đi qua điểm B(4; -5).

Câu trả lời:
Người trả lời: GV. Đỗ Đăng Vương
a. Phương trình đường tròn (C) tâm I(1; 5) và bán kính r = 4 là: $(x - 1)^{2} + (y - 5)^{2} = 16$

b. Tâm I của đường tròn (C) là trung điểm của MN $\Rightarrow$ I = ($\frac{3+9}{2}$, $\frac{-1+3}{2}$) $\Rightarrow$ I = (6; 1)
Ta có: R = MI = $\sqrt{(6 - 3)^{2} + (1 + 1)^{2}}$ = $\sqrt{13}$
Phương trình đường tròn (C) tâm I(6; 1) và bán kính R = $\sqrt{13}$ là: $(x - 6)^{2} + (y - 1)^{2} = 13$

c. Ta có: R = d(I, d) = $\frac{|5. 2 - 12. 1 + 11|}{\sqrt{5^{2} + (-12)^{2}}}$ = $\frac{9}{13}$
Phương tròn đường tròn (C) tâm I(2; 1) và bán kính R = $\frac{9}{13}$ là: $(x - 2)^{2} + (y - 1)^{2} = \frac{81}{169}$

d. Ta có R = AB = $\sqrt{(4 - 1)^{2} + (-5 + 2)^{2}}$ = $3\sqrt{2}$
Phương trình đường tròn (C) tâm A(1; -2) và bán kính R = $3\sqrt{2}$ là: $(x - 1)^{2} + (y + 2)^{2} = 18$
Bình luận (4)

windy

d. Phương trình đường tròn (C) có tâm A(1; -2) và đi qua điểm B(4; -5) là: (x - 1)² + (y + 2)² = 13.

Trả lời.

Vo Dao Phuc Loi B2109414

c. Phương trình đường tròn (C) có tâm I(2; 1) và tiếp xúc với đường thẳng $5x - 12y + 11 = 0$ là: (x - 2)² + (y - 1)² = 10.

Trả lời.

Khánh Ngọc Vũ

b. Phương trình đường tròn (C) có đường kính MN với M(3; -1) và N(9; 3) là: (x - 6)² + (y + 1)² = 25.

Trả lời.

Sơn Lý

a. Phương trình đường tròn (C) có tâm I(1; 5) và bán kính r = 4 là: (x - 1)² + (y - 5)² = 16.

Trả lời.
Nhấn vào đây để đánh giá
Thông tin người gửi
0.06078 sec| 2167.016 kb