Luyện tập 1 trang 32 sách giáo khoa (SGK) toán lớp 11 tập 2 KNTT:Cho hình chóp S.ABC có SA =...

Câu hỏi:

Luyện tập 1 trang 32 sách giáo khoa (SGK) toán lớp 11 tập 2 KNTT: Cho hình chóp S.ABC có SA = SB = SC. Gọi O là hình chiếu của S trên mặt phẳng (ABC) (H.7.36).

a) Chứng minh rằng O là tâm đường tròn ngoại tiếp tam giác ABC.

b) Xác định hình chiếu của đường thẳng SA trên mặt phẳng (ABC).

c) Chứng minh rằng nếu $AO \perp  BC$ thì$ SA \perp  BC.$

d) Xác định hình chiếu của các tam giác SBC, SCA, SAB trên mặt phẳng (ABC)

Cho hình chóp S.ABC có SA = SB = SC. Gọi O là hình chiếu của S trên mặt phẳng (ABC) (H.7.36).

Câu trả lời:
Người trả lời: GV. Đỗ Thị Linh
a) Ta có SA = SB = SC, vì vậy OA, OB, OC đều nằm trên đường trung trực của đoạn thẳng BC, CA, AB tương ứng. Khi đó, OA = OB = OC và O nằm trên đường trung trực của đoạn thẳng BC, CA, AB, cho nên O là tâm của đường tròn ngoại tiếp tam giác ABC.

b) Hình chiếu của đường thẳng SA trên mặt phẳng (ABC) là đoạn thẳng AB, vì SA vuông góc với mặt phẳng (ABC) và AB là một cạnh của tam giác đều ABC.

c) Nếu $AO \perp BC$, tức là AO vuông góc với BC, thì ta có SA vuông góc với BC.

d) Gọi M, N, P lần lượt là hình chiếu vuông góc của S lên BC, CA, AB. Do SA vuông góc với OM và SA song song với đường thẳng d nên d cũng vuông góc với OM. Khi đó, hình chiếu của tam giác SBC lên mặt phẳng (ABC) là tam giác có đỉnh M và đường cao là đường thẳng d. Tương tự, ta có thể tìm hình chiếu của tam giác SCA lên (ABC) là tam giác có đỉnh N và đường cao là đường thẳng e, cũng như tìm hình chiếu của tam giác SAB lên (ABC) là tam giác có đỉnh P và đường cao là đường thẳng f.
Bình luận (0)
Nhấn vào đây để đánh giá
Thông tin người gửi
0.50558 sec| 2176.195 kb