Lớp 11
Lớp 1điểm
1 năm trước
Phạm Đăng Ánh

Tính \(\lim\left(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{16}+...+\dfrac{1}{n^2}\right)\) . Sử dụng những kiến thức tính đến bài "Bài 1: Giới hạn của dãy số". Giải thích chi tiết bước làm.
Chào mọi người, mình đang bí bài này quá. Ai có thể giải thích giúp mình với ạ?

Hãy luôn nhớ cảm ơnvote 5 sao

nếu câu trả lời hữu ích nhé!

Các câu trả lời

Để giải bài toán trên, ta sử dụng kiến thức về dãy số hội tụ:
Ta có dãy số \(a_n = 1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{16}+...+\dfrac{1}{n^2}\).
Ta thấy rằng dãy số \(a_n\) là dãy số không giảm và có giới hạn khi n tiến đến vô cùng, nghĩa là dãy số này hội tụ.
Để tính giới hạn của dãy số \(a_n\), ta sử dụng công thức tính tổng của dãy số hội tụ:
\(\lim_{n \to \infty} a_n = \sum_{i=1}^{\infty} \dfrac{1}{i^2} = \dfrac{\pi^2}{6}\).

Vậy giá trị của \(\lim(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{16}+...+\dfrac{1}{n^2})\) là \(\dfrac{\pi^2}{6}\).

Hãy giúp mọi người biết câu trả lời này thế nào?
21 vote
Cảm ơn 8Trả lời.

{
"answer1": "Dựa vào công thức tổng cộng của dãy số học háp dẫn, ta có \(1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{16} + ... + \dfrac{1}{n^2} = \dfrac{\dfrac{1}{1} - \dfrac{1}{n+1}}{1 - \dfrac{1}{2}} = 2 - \dfrac{1}{n+1}\). Khi \(n \to \infty\), ta có \(2 - \dfrac{1}{n+1} \to 2\), do đó \(\lim(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{16}+...+\dfrac{1}{n^2}) = 2\).",
"answer2": "Ta chứng minh bằng quy nạp: Giả sử \(S_n = 1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{16} + ... + \dfrac{1}{n^2} = 2 - \dfrac{1}{n+1}\) với mọi \(n\). Khi đó, ta thấy rằng \(S_{n+1} = S_n + \dfrac{1}{(n+1)^2}\). Từ đó, ta suy ra \(\lim(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{16}+...+\dfrac{1}{n^2}) = 2\).",
"answer3": "Ta sử dụng định lý giới hạn của dãy số: Với dãy \(\dfrac{1}{n^2}\) khi \(n \to \infty\), ta có \(\lim\dfrac{1}{n^2} = 0\). Để tìm giới hạn của \(1 + \dfrac{1}{2} + \dfrac{1}{4} + ... + \dfrac{1}{n^2}\), ta cộng giới hạn của từng phần tử cộng dồn. Vì vậy, giới hạn cần tìm là \(1 + \dfrac{1}{2} + \dfrac{1}{4} + ... + \dfrac{1}{n^2} = 1 + \dfrac{1}{2} + \dfrac{1}{4} + ... + 0 = 2\)."
}

Hãy giúp mọi người biết câu trả lời này thế nào?
41 vote
Cảm ơn 1Trả lời.
Câu hỏi Toán học Lớp 11
Câu hỏi Lớp 11

Bạn muốn hỏi điều gì?

Đặt câu hỏix
  • ²
  • ³
  • ·
  • ×
  • ÷
  • ±
  • Δ
  • π
  • Ф
  • ω
  • ¬
0.36709 sec| 2274.07 kb