Cho tam giác ABC . Các tia phân giác của góc B và góc C cắt nhau tại I. Chứng minh rằng góc BIC= 135 độ thì ABC là tam giác vuông
Xin chú ý! Mình đang trong tình thế cần được giải cứu! Có ai có thể đưa cho mình một lời khuyên hữu ích không?
Các câu trả lời
Câu hỏi Toán học Lớp 7
Câu hỏi Lớp 7
Bạn muốn hỏi điều gì?
Lời giải:
Theo tính chất tổng 3 góc trong 1 tam giác thì:
$\widehat{BIC}=180^0-\widehat{IBC}-\widehat{ICB}$
$=180^0-\frac{\widehat{B}}{2}-\frac{\widehat{C}}{2}$
$=\frac{360^0-(\widehat{B}+\widehat{C})}{2}$
$=\frac{360^0-(180^0-\widehat{A})}{2}=\frac{180^0+\widehat{A}}{2}$
Nếu $\widehat{BIC}=135^0$ thì:
$135^0=\frac{180^0+\widehat{A}}{2}$
$\Rightarrow 180^0+\widehat{A}=135^0.2=270^0$
$\Rightarrow \widehat{A}=270^0-180^0=90^0$
$\Rightarrow \triangle ABC$ vuông tại $A$