Cho elip có phương trình:x2/16+y2/4=1.M là điểm thuộc (E) sao cho MF1=MF2.Khi đó tọa độ điểm M là?
Chào cả nhà, mình đang gặp chút vấn đề khó khăn và thực sự cần sự giúp đỡ của mọi người. Ai biết chỉ giúp mình với nhé!
Các câu trả lời
Câu hỏi Toán học Lớp 10
- Bài 9: Tìm phương trình chính tắc của elip nếu nó đi qua điểm A(6; 0)...
- Câu 38. Trong mặt phẳng tọa độ $O x y$, cho điểm $M(-1 ; 1)$ và đường thẳng $\Delta: 3 x-4 y-3=0$. a) Viết...
- Các giá trị m để tam thức f(x) = x 2 - (m + 2)x + 8m + 1 đổi dấu 2 lần là: A. m ≤ 0 hoặc m ≥ 28 B. m < 0 hoặc...
- Trong mặt phẳng oxy cho A(1;-3) B(0;5) C(4;3) a) chứng minh 3 điểm A,B,C là 3 đỉnh của tam giác b)...
- Bài 1: a) Viết phương trình đường tròn có tâm \(I(3;-1)\) và...
- Thực hiện các phép tính sau trên máy tính bỏ túi. 13 . 0 , 12 3 làm tròn kết quả đến 4 chữ số thập phân.
- Hình vẽ bên dưới mô phỏng một trạm thu phát sóng điện thoại di động đặt ở vị trí...
- Trong mặt phẳn toạ độ Oxy, cho đường tròn (C): (x-2)2 + (y-1)2 = 5. Phương trình tiếp tuyến...
Câu hỏi Lớp 10
- Điểm khác nhau cơ bản giữa hô hấp hiếu khí và hô hấp kị khí là...
- Con người đã ứng dụng khả năng phân giải polysaccharide của vi sinh vật để làm gì?
- Tại sao nói con người là chủ thể sáng tạo ra các giá trị vật chất và tinh...
- Nêu và giải thích rõ tác dụng của từng bước trong quy trình bảo quản...
- Change the following sentences into passive voice. A. Modal verbs and future tense. 1. They will post your letter...
- 67. The farmer says he can't remember a time A. which B. when C. where D. whose 68. I think the Chinese are the...
- II. Read the passage and choose the best option for each question or statement. (1.0 pt) The difference between the...
- Do you think married women should pursue a career?
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Để giải bài toán trên, ta sử dụng phương pháp định lí tiếp tuyến.Định lí tiếp tuyến: Đường tiếp tuyến với một elip (E) tại một điểm P nào đó sẽ cắt trục lớn của elip tại điểm F1 và cắt trục ngắn của elip tại điểm F2 sao cho MP là đường cao của tam giác MPF1 và tam giác MPF2.Công thức của elip có dạng: x^2/a^2 + y^2/b^2 = 1Trong đó, a là độ dài nửa trục lớn, b là độ dài nửa trục ngắn.Ta có elip có phương trình: x^2/16 + y^2/4 = 1-> a^2 = 16 -> a = 4 và b^2 = 4 -> b = 2Gọi tâm của elip là O(0, 0).Ta có F1 và F2 là hai tiếp điểm của elip trên trục lớn và F1F2 = 2a = 8.Để tính tọa độ điểm M, ta sử dụng Định lí tiếp tuyến:Với điểm M(x, y) thuộc elip (E) và MF1 = MF2, ta có: MF1 = MF2 = a = 4.Áp dụng công thức khoảng cách giữa hai điểm trong không gian, ta có:√[(x-4)^2 + y^2] = √[(x+4)^2 + y^2]Bình phương cả hai mặt của phương trình, ta được:(x-4)^2 + y^2 = (x+4)^2 + y^2Rút gọn, ta có:(x-4)^2 = (x+4)^2Mở ngoặc và rút gọn, ta được:x^2 - 8x + 16 = x^2 + 8x + 16Hợp nhất các thành phần của phương trình, ta có:16x = 0-> x = 0Thay x = 0 vào phương trình elip, ta có:0^2/16 + y^2/4 = 1-> y^2/4 = 1-> y^2 = 4-> y = ±2Vậy, tọa độ điểm M là (0, 2) và (0, -2).
- Chọn F1 = (0, -2) và F2 = (0, 2), tức là c = 2- Gọi M(x, y) là điểm thuộc elip, ta có MF1 = sqrt(x^2 + (y + 2)^2) và MF2 = sqrt(x^2 + (y - 2)^2)- Theo đề bài, MF1 = MF2, từ đó ta có: sqrt(x^2 + (y + 2)^2) = sqrt(x^2 + (y - 2)^2)- Bình phương cả hai vế của phương trình: x^2 + (y + 2)^2 = x^2 + (y - 2)^2- Rút gọn được: 4y = 0- Từ phương trình này, ta suy ra y = 0- Thay y = 0 vào phương trình của elip, ta có x^2/16 = 1 => x = 4 hoặc x = -4- Vậy các tọa độ của điểm M là (4, 0) và (-4, 0)
- Chọn F1 = (-3, 0) và F2 = (3, 0), tức là c = 3- Gọi M(x, y) là điểm thuộc elip, ta có MF1 = sqrt((x + 3)^2 + y^2) và MF2 = sqrt((x - 3)^2 + y^2)- Theo đề bài, MF1 = MF2, từ đó ta có: sqrt((x + 3)^2 + y^2) = sqrt((x - 3)^2 + y^2)- Bình phương cả hai vế của phương trình: (x + 3)^2 + y^2 = (x - 3)^2 + y^2- Rút gọn được: 4x = 0- Từ phương trình này, ta suy ra x = 0- Thay x = 0 vào phương trình của elip, ta có y^2/4 = 1 => y = 2 hoặc y = -2- Vậy các tọa độ của điểm M là (0, 2) và (0, -2)
- Từ phương trình của elip: x^2/16 + y^2/4 = 1- Gọi F1 và F2 lần lượt là hai tiếp điểm của đường vuông góc Ox từ elip- Đặt F1(-c, 0) và F2(c, 0), với c là cạnh kề của hình tam giác vuông F1MF2- Gọi M(x, y) là điểm thuộc elip, ta có MF1 = MF2 = c- Ta có cách tính khoảng cách giữa hai điểm trong hệ trục tọa độ: d = sqrt((x1 - x2)^2 + (y1 - y2)^2)- Áp dụng công thức tính khoảng cách giữa hai điểm MF1 và MF2, ta có: sqrt((x - (-c))^2 + (y - 0)^2) = sqrt((x - c)^2 + (y - 0)^2)- Rút gọn được: sqrt((x + c)^2 + y^2) = sqrt((x - c)^2 + y^2)- Bình phương cả hai vế của phương trình: (x + c)^2 + y^2 = (x - c)^2 + y^2- Rút gọn được: 4cx = 0- Từ phương trình này, ta suy ra x = 0 hoặc c = 0- Khi x = 0, ta có y^2/4 = 1 => y = 2 hoặc y = -2- Khi c = 0, ta có x^2/16 = 1 => x = 4 hoặc x = -4- Vậy các tọa độ của điểm M là (4, 0), (-4, 0), (0, 2) và (0, -2)