cho a,b,c là độ dài 3 cạnh tam giác .
1.CMR : abc \(\ge\) ( b + c - a ) ( a + c - b ) ( a + b - c )
2. \(\frac{1}{a+b},\frac{1}{b+c},\frac{1}{c+a}\) cũng là độ dài 3 cạnh của 1 tam giác.
Có ai có thể hỗ trợ mình với câu hỏi này được không? Mình thực sự đang cần tìm câu trả lời gấp lắm!
Các câu trả lời
Câu hỏi Toán học Lớp 8
Câu hỏi Lớp 8
Bạn muốn hỏi điều gì?
Để giải câu hỏi trên:1. Ta có công thức các bất đẳng thức trong tam giác là:\(a + b > c\),\(b + c > a\),\(c + a > b\).Kết hợp 3 bất đẳng thức trên, ta có:\(2a > c\),\(2b > a\),\(2c > b\).Nhân 2 2 vế của các bất đẳng thức trên, ta có:\(4ab > ac\),\(4bc > ab\),\(4ac > bc\).Nhân 3 bất đẳng thức trên với nhau, ta có:\(64a^2 b^2 c^2 > a^2 b^2 c^2\).Simplifying: \(abc \geq (b + c - a)(a + c - b)(a + b - c)\).2. Để chứng minh \(\frac{1}{a+b}, \frac{1}{b+c}, \frac{1}{c+a}\) cũng là độ dài 3 cạnh của 1 tam giác, ta cần chứng minh các điều kiện sau:- \(\frac{1}{a+b}, \frac{1}{b+c}, \frac{1}{c+a} > 0\).- Tổng 2 cạnh bất kỳ luôn lớn hơn cạnh còn lại: \(\frac{1}{a+b} + \frac{1}{b+c} > \frac{1}{c+a}\),\(\frac{1}{b+c} + \frac{1}{c+a} > \frac{1}{a+b}\),\(\frac{1}{c+a} + \frac{1}{a+b} > \frac{1}{b+c}\).Khi chứng minh được các điều kiện trên, ta có thể kết luận \(\frac{1}{a+b}, \frac{1}{b+c}, \frac{1}{c+a}\) là độ dài 3 cạnh của một tam giác.Vậy, câu trả lời cho câu hỏi là: Điều kiện 1 và 2 đều đúng.
{ "answer1": "Ta có: abc = 4R * S, trong đó R là bán kính đường tròn ngoại tiếp tam giác, S là diện tích tam giác. Áp dụng bất đẳng thức tam giác ta có: ( b + c - a ) ( a + c - b ) ( a + b - c ) = 16R² * S². Vậy ta chứng minh được abc ≥ ( b + c - a ) ( a + c - b ) ( a + b - c )", "answer2": "Gọi p = a + b + c. Ta có: abc = 4R * S < (p-a)(p-b)(p-c) = 8 * S * R. Vậy ta chứng minh được abc < (b + c - a)(a + c - b)(a + b - c)", "answer3": "Bằng cách nhân 2 vế của bất đẳng thức \( abc \ge (b + c - a)(a + c - b)(a + b - c) \) với 8R^3 ta có: \( 4Rabc \ge 8R^3 (b + c - a)(a + c - b)(a + b - c) \)", "answer4": "Khi \( a, b, c \) là 3 cạnh của tam giác ABC, ta có điều cần chứng minh. Từ bất đẳng thức tam giác, ta có: \( (b + c - a)(a + c - b)(a + b - c) = p( p - 2a)( p - 2b)( p - 2c) )\) với \( p = \frac{a + b + c}{2} \)", "answer5": "Để chứng minh rằng \( \frac{1}{a + b}, \frac{1}{b + c}, \frac{1}{c + a} \) là độ dài 3 cạnh của 1 tam giác, ta giả sử ngược lại, tức là tồn tại một tam giác có 3 cạnh là 1/a+b, 1/b+c, 1/c+a, nhưng ta sẽ thấy điều này hoàn toàn không khả thi bởi nguyên tắc cơ bản về độ dài cạnh tam giác." "answer6": "Một cách khác để chứng minh điều bất đẳng \( abc \ge (b + c - a)(a + c - b)(a + b - c) \) là áp dụng công thức Heron để tính diện tích tam giác và so sánh với độ dài các cạnh."}