a) Khi m = -1, đường thẳng (d) trở thành y = -x + 7. Giao điểm của (P) và (d) là điểm A và B, khi giải hệ phương trình x^2 = -x + 7, ta có x = 1 và x = -2. Ta thấy điểm A có tọa độ (1, 2) và điểm B có tọa độ (-2, 9). Diện tích tam giác OAB được tính bằng công thức sau: S = 0.5 * |x1y2 + x2y3 + x3y1 - y1x2 - y2x3 - y3x1|, trong đó O(0,0), A(1,2), B(-2,9). Thay vào công thức ta có: S = 0.5 * |1*9 + (-2)*0 + 0*2 - 2*(-2) - 9*1 - 1*0| = 0.5 * |9 + 4 + 0 + 4 - 9 - 0| = 0.5 * 8 = 4. Vậy diện tích tam giác OAB là 4. b) Để (d) cắt (P) tại hai điểm phân biệt sao cho y1 và y2 là các số chính phương, ta cần tìm m sao cho phương trình x^2 = mx + 7 có hai nghiệm phân biệt và y1, y2 là các số chính phương. Để y1, y2 là các số chính phương, ta cần điều kiện Δ = m^2 - 4*7 = m^2 - 28 là một số chính phương. Mặt khác, để phương trình có hai nghiệm phân biệt, ta cần Δ > 0. Nên m^2 - 28 > 0 => m < -√28 hoặc m > √28. Vậy m thỏa mãn là m < -√28 hoặc m > √28.
Mọi người ơi, mình rất cần trợ giúp của các Bạn lúc này. Có ai sẵn lòng chia sẻ kiến thức giúp mình vượt qua vấn đề này không?
Câu hỏi Toán học Lớp 9
Câu hỏi Lớp 9
Bạn muốn hỏi điều gì?