Tìm a và b biết đường thẳng y = ax + b đi qua hai điểm A(2;-1) và B (1;-3) b tìm toạ độ giao điểm của hai đường thẳng (d1) 2x+y=-3 và (d2) 3x-2y=-1
Chào các Bạn, mình cá rằng ở đây có người biết câu trả lời cho câu hỏi của mình, có ai không nhỉ?
Các câu trả lời
Câu hỏi Toán học Lớp 9
- Cho ba số thực dương x, y, z thỏa mãn x * y ^ 2 + y * z ^ 2 + z * x ^ 2 = 3xyz Tìm giá trị nhỏ...
- Cho phương trình bậc hai: x2-2(m-1)x+2m-3=0 với m là tham số. Tìm m để phương trình...
- mk xin hỏi ở trên này có đăng kí khóa hok onl giống như moon.vn ko
- Cho tam giác ABC (AC > AB) nội tiếp đường tròn (O, R) có đường kính BC, về...
- Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each...
- Hãy xác định hàm số y = ax + b biết : a) Đồ thị hàm số song song với đường thẳng y = x – 3...
- Viết phương trình hóa học hoàn thành dãy biến hóa sau ( ghi rõ điều kiện nếu có ) a) Fe ----> FeCl3 ------>...
- Để giúp các bạn trẻ ' Khởi nghiệp ' , ngân hàng cho vay vốn ưu đãi lãi suất 5%/năm. một nhóm bạn trẻ vay 100 triệu đồng...
Câu hỏi Lớp 9
- Tường Thuật Câu Nghi Vấn 5.Jane asked, "Did you phone me last night, John?...
- Dựa vào kiến thức bài 31,32,33: VÙNG ĐÔNG NAM BỘ. Em hãy tổng hợp kiến thức...
- cảm nhận về hai khổ thơ 1 và 2 bài thơ "Viếng lăng Bác"
- Nhận định nào sau đây đúng ? A. Những chất có nhóm -OH hoặc -COOH tác dụng được với NaOH. B. Những chất có nhóm -OH...
- Phân tích đoạn trích "Kiều ở lầu ngưng bích " HeLP ME!!!!!!!
- Choose the best option to complete the sentences. French is a ............... language to learn than English is. A....
- I. Choose the word whose stress pattern is different to that of the rest in each group. 1. A. bargain B. construct C....
- Viết đoạn văn ngắn liên hệ Kiều ở lầu ngưng bích với tác phẩm khác để so sánh nghệ...
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Phương pháp giải:Để tìm a và b, ta sử dụng định lí về đường thẳng đi qua hai điểm.Ta có hai điểm A(2, -1) và B(1, -3). Áp dụng định lí đường thẳng đi qua hai điểm, ta có:a = (y2 - y1)/(x2 - x1) = (-3 - (-1))/(1 - 2) = -2/1 = -2Đường thẳng y = ax + b, ta thay a = -2 và điểm A vào, ta có:-1 = -2*2 + b => -1 = -4 + b => b = 3Vậy, a = -2 và b = 3.Để tìm tọa độ giao điểm của hai đường thẳng (d1) 2x + y = -3 và (d2) 3x - 2y = -1, ta giải hệ phương trình hai đường thẳng này.Để thuận tiện, ta nhân vào cả hai phương trình (d1), (d2) cho -2 và 3 tương ứng, ta có:(d1): -4x - 2y = 6(d2): 9x - 6y = -3Cộng hai phương trình lại, ta được:5x - 8y = 3Đưa về dạng tổng quát ax + by = c, ta có:5x - 8y - 3 = 0Vậy, tọa độ giao điểm của hai đường thẳng là (3/5, 0).
Cách 1:1. Tìm a và b:- Gọi x và y là toạ độ của điểm A, ta có: x = 2, y = -1- Thay các giá trị vào phương trình đường thẳng y = ax + b, ta có: -1 = a*2 + b- Tương tự, thay toạ độ của điểm B vào phương trình, ta có: -3 = a*1 + b- Giải hệ phương trình 2x2 để tìm a và b.2. Tìm tọa độ giao điểm của hai đường thẳng (d1) và (d2):- Dùng phương pháp đặt hệ tọa độ: Ta có 2x + y = -3 và 3x - 2y = -1- Giải hệ phương trình 2x2 để tìm tọa độ giao điểm.Cách 2:1. Tìm a và b:- Gọi x và y là toạ độ của điểm A, ta có: x = 2, y = -1- Thay các giá trị vào phương trình đường thẳng y = ax + b, ta có: -1 = 2a + b- Tương tự, thay toạ độ của điểm B vào phương trình, ta có: -3 = a + b- Giải hệ phương trình 2x2 để tìm a và b.2. Tìm tọa độ giao điểm của hai đường thẳng (d1) và (d2):- Dùng phương pháp thế: Ta có hệ phương trình 2x + y = -3 và 3x - 2y = -1- Giải hệ phương trình 2x2 để tìm tọa độ giao điểm.Cách 3:1. Tìm a và b:- Gọi x và y là toạ độ của điểm A, ta có: x = 2, y = -1- Thay các giá trị vào phương trình đường thẳng y = ax + b, ta có: -1 = 2a + b- Tương tự, thay toạ độ của điểm B vào phương trình, ta có: -3 = a + b- Giải hệ phương trình 2x2 để tìm a và b.2. Tìm tọa độ giao điểm của hai đường thẳng (d1) và (d2):- Dùng công thức giải hệ phương trình 2x2, lấy định thức của hệ số x và hệ số y và chia cho định thức của hệ số x và hệ số y.- Tính giá trị x và y tại tọa độ giao điểm của hai đường thẳng.Cách 4:1. Tìm a và b:- Gọi x và y là toạ độ của điểm A, ta có: x = 2, y = -1- Thay các giá trị vào phương trình đường thẳng y = ax + b, ta có: -1 = 2a + b- Gọi x và y là toạ độ của điểm B, ta có: x = 1, y = -3- Thay các giá trị vào phương trình, ta có: -3 = a + b- Giải hệ phương trình 2x2 để tìm a và b.2. Tìm tọa độ giao điểm của hai đường thẳng (d1) và (d2):- Chuyển đổi hai phương trình về dạng chuẩn để dễ giải: 2x + y + 3 = 0 và 3x - 2y + 1 = 0- Giải hệ phương trình 2x2 để tìm tọa độ giao điểm.