Lớp 9
Lớp 1điểm
1 năm trước
Đỗ Văn Đạt
Mời thí sinh CLICK vào liên kết hoặc ảnh bên dưới Mở ứng dụng Shopee để tiếp tục làm bài thi
https://s.shopee.vn/AKN2JyAJAw
kinhthu.com và đội ngũ nhân viên xin chân thành cảm ơn!

Giải phương trình vô tỉ: 1/ \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+15}\) 2/ \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x+1\right)}-\sqrt{x^2-3x+4}\) 3/ \(\sqrt[5]{x-1}+\sqrt[3]{x+8}=-x^3+1\) 4/ \(\sqrt{5-x^6}+\sqrt[3]{3x^4-2}=1\)
Mình biết là mọi người đều bận rộn, nhưng nếu Bạn nào có thể sắp xếp chút thời gian để hỗ trợ mình giải đáp câu hỏi này, mình sẽ rất biết ơn.

Hãy luôn nhớ cảm ơnvote 5 sao

nếu câu trả lời hữu ích nhé!

Các câu trả lời

{
"content1": "1. Giải phương trình 1: Ta đưa các thành phần chứa dấu căn về cùng một bên, rồi bình phương 2 lần hai vế của phương trình để loại bỏ dấu căn. Từ đó, giải phương trình bậc 2 thu được nghiệm x = 2 hoặc x = 3.",
"content2": "2. Giải phương trình 2: Nhân hai vế của phương trình với \(\sqrt{3x^2-5x+1}+\sqrt{x^2-2}\), rồi chia tử số cho mẫu số để loại bỏ căn. Từ đó giải phương trình bậc 2 thu được nghiệm x = 1 hoặc x = 2.",
"content3": "3. Giải phương trình 3: Đặt y = \(\sqrt[5]{x-1}\), z = \(\sqrt[3]{x+8}\), ta có hệ phương trình \(\begin{cases} y+z = -x^3+1 \\ y^5 = x-1 \\ z^3 = x+8 \end{cases}\). Giải hệ phương trình này ta thu được nghiệm x = 3.",
"content4": "4. Giải phương trình 4: Nhân hai vế của phương trình với \(\sqrt{5-x^6}-\sqrt[3]{3x^4-2}\), rồi chia để loại bỏ dấu căn. Từ đó giải phương trình bậc 6 thu được nghiệm x = 1 hoặc x = -1."
}

Hãy giúp mọi người biết câu trả lời này thế nào?
51 vote
Cảm ơn 2Trả lời.
Câu hỏi Toán học Lớp 9
Câu hỏi Lớp 9

Bạn muốn hỏi điều gì?

Đặt câu hỏix
  • ²
  • ³
  • ·
  • ×
  • ÷
  • ±
  • Δ
  • π
  • Ф
  • ω
  • ¬
0.24010 sec| 2281.141 kb