Bài tập 4 trang 110 sách giáo khoa (SGK) toán lớp 4 tập 2 KNTT: Tính bằng cách thuận...
Câu hỏi:
Bài tập 4 trang 110 sách giáo khoa (SGK) toán lớp 4 tập 2 KNTT: Tính bằng cách thuận tiện?
$\frac{4}{27}$ + $\frac{51}{9}$ + $\frac{13}{9}$ - 2
Câu trả lời:
Người trả lời: GV. Đỗ Hồng Ánh
Để tính bài toán trên bằng cách thuận tiện, ta có thể nhận thấy rằng $\frac{51}{9}$ và $\frac{13}{9}$ đều có mẫu số là 9. Ta có thể nhóm chúng lại thành một phần tử là $\frac{51+13}{9} = \frac{64}{9}$. Vậy, ta có thể viết lại bài toán như sau: $\frac{4}{27} + \frac{64}{9} - 2$. Tiếp theo, ta thấy mẫu số của $\frac{4}{27}$ là 27 và mẫu số của $\frac{64}{9}$ là 9. Ta muốn chuyển chúng về cùng một mẫu số để dễ tính toán. Ta nhân và chia tử số và mẫu số của $\frac{4}{27}$ với 3. Ta được: $\frac{4 \times 3}{27 \times 3} = \frac{12}{81}$.Vậy bài toán sẽ trở thành: $\frac{12}{81} + \frac{64}{9} - 2$. Sau khi có các phép tính trên cùng một mẫu số, ta cộng và trừ các phân số để thu được kết quả:$\frac{12}{81} + \frac{64}{9} - 2 = \frac{12}{81} + \frac{576}{81} - \frac{162}{81} = \frac{426}{81} - 2 = \frac{426 - 162}{81} = \frac{264}{81} = \frac{88}{27}$.Vậy, kết quả của bài toán là $\frac{88}{27}$.
Câu hỏi liên quan:
- Luyện tậpBài tập 1 trang 110 sách giáo khoa (SGK) toán lớp 4 tập 2 KNTT:...
- Bài tập 2 trang 110 sách giáo khoa (SGK) toán lớp 4 tập 2 KNTT: Tính giá trị biểu...
- Bài tập 3 trang 110 sách giáo khoa (SGK) toán lớp 4 tập 2 KNTT:Bác Tư có 1 khu đất, bác đã sử...
- Bài tập 5 trang 110 sách giáo khoa (SGK) toán lớp 4 tập 2 KNTT: Đố em!Em hãy giúp Nam và Việt thực...
- Luyện tậpBài tập 1 trang 111 sách giáo khoa (SGK) toán lớp 4 tập 2 KNTT:...
- Bài tập 2 trang 111 sách giáo khoa (SGK) toán lớp 4 tập 2 KNTT: Rút gọn rồi tính giá trị của biểu...
- Bài tập 3 trang 111 sách giáo khoa (SGK) toán lớp 4 tập 2 KNTT:Nam có 400 000 đồng tiền tiết...
- Bài tập 4 trang 111 sách giáo khoa (SGK) toán lớp 4 tập 2 KNTT:Một tấm bìa hình chữ nhật có...
- Bài tập 5 trang 111 sách giáo khoa (SGK) toán lớp 4 tập 2 KNTT: Tính bằng cách thuận...
Như vậy, kết quả của biểu thức $rac{4}{27}$ + $rac{51}{9}$ + $rac{13}{9}$ - 2 khi tính bằng cách thuận tiện là -$rac{123}{9}$.
Kết quả cuối cùng của biểu thức là ($rac{471}{81}$ - 18) = $rac{471}{81}$ - $rac{1458}{81}$ = $-rac{987}{81}$ = -$rac{123}{9}$. Vậy kết quả của biểu thức là -$rac{123}{9}$.
Tính tổng $rac{12}{81}$ + $rac{51}{9}$ + $rac{13}{9}$ theo phép cộng các phân số, ta có: $rac{12}{81}$ + $rac{51}{9}$ + $rac{13}{9}$ = $rac{12}{81}$ + $rac{459}{81}$ = $rac{471}{81}$.
Tính tổng $rac{4}{27}$ + $rac{51}{9}$ + $rac{13}{9}$ - 2 theo dạng phép cộng các phân số trước, ta có: ($rac{12}{81}$ + $rac{51}{9}$ + $rac{13}{9}$) - 2 = ($rac{12}{81}$ + $rac{51}{9}$ + $rac{13}{9}$ - 18).
Để tính bằng cách thuận tiện, ta có thể chuyển $rac{4}{27}$ thành dạng phân số có số mẫu là 9 bằng cách nhân cả tử và mẫu cho 3, từ đó $rac{4}{27}$ = $rac{12}{81}$.