Cho elip có phương trình:x2/16+y2/4=1.M là điểm thuộc (E) sao cho MF1=MF2.Khi đó tọa độ điểm M là?
Chào cả nhà, mình đang gặp chút vấn đề khó khăn và thực sự cần sự giúp đỡ của mọi người. Ai biết chỉ giúp mình với nhé!
Các câu trả lời
Câu hỏi Toán học Lớp 10
- Cho M(2 ; 0) : N( 2 ; 2) và P( -1 ; 3) lần lượt là trung điểm các cạnh BC ; CA ; AB ...
- Xác định tập hợp A = ( -3;5] \(\cup\) [8;10] \(\cup\) [2;8) B = [0;2] \(\cup\)...
- trong khai triển (2x 2+1/x) n biết hệ số của x 3 chia cho hệ số của x 6 bằng 4. Tìm...
- Một hộp kín đựng 20 viên bi được đánh số khác nhau, trong đó có 12...
- Cho tam giác ABC, đặt vectơ a = vectơ AB, vectơ b = vectơ AC a) Dựng các điểm M, N sao cho vectơ AM = 1/3AB, véctơ CN...
- Bài 1: a) Viết phương trình đường tròn có tâm \(I(3;-1)\) và...
- Một quả bóng chày được đánh lên ở độ cao 3 feet (1 feet=0.3048m) so với mặt đất với vận tốc...
- tìm m để phương trình x^2-(m+3)x+2m+2=0 có đúng 1 nghiệm thuộc (-∞;3]
Câu hỏi Lớp 10
- II. PHẦN VIẾT (6.0 ĐIỂM) Câu 1. Viết đoạn văn (khoảng 200 chữ) nêu cảm nhận về nhân vật cô...
- Câu 1: Nhà Đường được thành lập như thế nào? Bộ máy nhà nước dưới thời Đường...
- Đơn vị đo tốc độ tính toán của máy tính là gì?
- cân bằng pt kmno4- Mno2+k2mno4+O2 bang phuong phap thang bang electron
- CO2 + Ca(OH)2 ---> CaCO3 + H2O 2CO2 + Ca(OH)2 ----> Ca(HCO3)2 Ca(HCO3)2 ---> CaCO3 + CO2 + H2O =>...
- Nguyên tố Y thuộc chu kì 4, nhóm IA của bảng tuần hoàn. Phát biểu nào sau đây về Y là đúng A. Y có độ âm điện lớn nhất...
- Bài tập thực hành 5 (trang 23, SGK chuyên đề học tập Ngữ văn 10 – Cánh diều ): Từ vấn...
- 1: People say that this novel was written by a very young author -> this novel... 2: We haven't beeb to...
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Để giải bài toán trên, ta sử dụng phương pháp định lí tiếp tuyến.Định lí tiếp tuyến: Đường tiếp tuyến với một elip (E) tại một điểm P nào đó sẽ cắt trục lớn của elip tại điểm F1 và cắt trục ngắn của elip tại điểm F2 sao cho MP là đường cao của tam giác MPF1 và tam giác MPF2.Công thức của elip có dạng: x^2/a^2 + y^2/b^2 = 1Trong đó, a là độ dài nửa trục lớn, b là độ dài nửa trục ngắn.Ta có elip có phương trình: x^2/16 + y^2/4 = 1-> a^2 = 16 -> a = 4 và b^2 = 4 -> b = 2Gọi tâm của elip là O(0, 0).Ta có F1 và F2 là hai tiếp điểm của elip trên trục lớn và F1F2 = 2a = 8.Để tính tọa độ điểm M, ta sử dụng Định lí tiếp tuyến:Với điểm M(x, y) thuộc elip (E) và MF1 = MF2, ta có: MF1 = MF2 = a = 4.Áp dụng công thức khoảng cách giữa hai điểm trong không gian, ta có:√[(x-4)^2 + y^2] = √[(x+4)^2 + y^2]Bình phương cả hai mặt của phương trình, ta được:(x-4)^2 + y^2 = (x+4)^2 + y^2Rút gọn, ta có:(x-4)^2 = (x+4)^2Mở ngoặc và rút gọn, ta được:x^2 - 8x + 16 = x^2 + 8x + 16Hợp nhất các thành phần của phương trình, ta có:16x = 0-> x = 0Thay x = 0 vào phương trình elip, ta có:0^2/16 + y^2/4 = 1-> y^2/4 = 1-> y^2 = 4-> y = ±2Vậy, tọa độ điểm M là (0, 2) và (0, -2).
- Chọn F1 = (0, -2) và F2 = (0, 2), tức là c = 2- Gọi M(x, y) là điểm thuộc elip, ta có MF1 = sqrt(x^2 + (y + 2)^2) và MF2 = sqrt(x^2 + (y - 2)^2)- Theo đề bài, MF1 = MF2, từ đó ta có: sqrt(x^2 + (y + 2)^2) = sqrt(x^2 + (y - 2)^2)- Bình phương cả hai vế của phương trình: x^2 + (y + 2)^2 = x^2 + (y - 2)^2- Rút gọn được: 4y = 0- Từ phương trình này, ta suy ra y = 0- Thay y = 0 vào phương trình của elip, ta có x^2/16 = 1 => x = 4 hoặc x = -4- Vậy các tọa độ của điểm M là (4, 0) và (-4, 0)
- Chọn F1 = (-3, 0) và F2 = (3, 0), tức là c = 3- Gọi M(x, y) là điểm thuộc elip, ta có MF1 = sqrt((x + 3)^2 + y^2) và MF2 = sqrt((x - 3)^2 + y^2)- Theo đề bài, MF1 = MF2, từ đó ta có: sqrt((x + 3)^2 + y^2) = sqrt((x - 3)^2 + y^2)- Bình phương cả hai vế của phương trình: (x + 3)^2 + y^2 = (x - 3)^2 + y^2- Rút gọn được: 4x = 0- Từ phương trình này, ta suy ra x = 0- Thay x = 0 vào phương trình của elip, ta có y^2/4 = 1 => y = 2 hoặc y = -2- Vậy các tọa độ của điểm M là (0, 2) và (0, -2)
- Từ phương trình của elip: x^2/16 + y^2/4 = 1- Gọi F1 và F2 lần lượt là hai tiếp điểm của đường vuông góc Ox từ elip- Đặt F1(-c, 0) và F2(c, 0), với c là cạnh kề của hình tam giác vuông F1MF2- Gọi M(x, y) là điểm thuộc elip, ta có MF1 = MF2 = c- Ta có cách tính khoảng cách giữa hai điểm trong hệ trục tọa độ: d = sqrt((x1 - x2)^2 + (y1 - y2)^2)- Áp dụng công thức tính khoảng cách giữa hai điểm MF1 và MF2, ta có: sqrt((x - (-c))^2 + (y - 0)^2) = sqrt((x - c)^2 + (y - 0)^2)- Rút gọn được: sqrt((x + c)^2 + y^2) = sqrt((x - c)^2 + y^2)- Bình phương cả hai vế của phương trình: (x + c)^2 + y^2 = (x - c)^2 + y^2- Rút gọn được: 4cx = 0- Từ phương trình này, ta suy ra x = 0 hoặc c = 0- Khi x = 0, ta có y^2/4 = 1 => y = 2 hoặc y = -2- Khi c = 0, ta có x^2/16 = 1 => x = 4 hoặc x = -4- Vậy các tọa độ của điểm M là (4, 0), (-4, 0), (0, 2) và (0, -2)