Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y=ax+b ( a,b là tham số) tìm a,b để (d) có hệ số góc bằng 3 và cắt đường thẳng (A): y = 2x + 3 tại điểm có tung độ bằng 5
Làm ơn, nếu Mọi người có thể và có thời gian, Mọi người có thể giúp mình trả lời câu hỏi này không? Mình đánh giá cao mọi sự giúp đỡ mà Mọi người có thể cung cấp!
Các câu trả lời
Câu hỏi Toán học Lớp 9
Câu hỏi Lớp 9
Bạn muốn hỏi điều gì?
Để tìm a, b ta sử dụng 2 điều kiện:1. Hệ số góc của đường thẳng (d) bằng 3, tức là a = 3.2. Đường thẳng (d) cắt đường thẳng (A) tại điểm có tung độ bằng 5, suy ra ta có phương trình hệ đẳng thức giữa (d) và (A):3x + b = 2x + 3 Suy ra b = 3.Vậy a = 3, b = 3. Đường thẳng (d) có phương trình y = 3x + 3.
{"1. Ta biết rằng đường thẳng (d) có hệ số góc bằng 3, nên phương trình của nó có dạng y = 3x + b. Để cắt đường thẳng (A) tại điểm có tung độ bằng 5, ta thay tung độ y = 5 vào phương trình của đường thẳng (A) để tìm hoành độ x tương ứng.2. Từ đó, ta có: 5 = 2x + 3 => x = 1. Tiếp theo, thay x = 1 vào phương trình của đường thẳng (d), ta có y = 3*1 + b = 3 + b.3. Vậy, phương trình của đường thẳng (d) là y = 3x + b, trong đó b = 3 + b. Như vậy, b = 3.4. Đồng thời, ta đã tìm được giá trị của b, tức là b = 3. Thay b = 3 vào phương trình của đường thẳng (d), ta có phương trình của đường thẳng (d) là y = 3x + 3.5. Vậy nên, để đường thẳng (d) có hệ số góc bằng 3 và cắt đường thẳng (A) tại điểm có tung độ bằng 5, ta cần tìm a,b sao cho a=3 và b=3 trong phương trình y = ax + b của đường thẳng (d)."}