a/ 1 + sinx + cosx + sin2x + cos2x = 0 b/ cos3x + cos2x - cosx -1 =0
mk cực gấp luôn ạ,ai làm đc mk tim cho điii
Mình cần một tay giúp đây! Ai có thể đóng góp ý kiến để mình giải quyết câu hỏi này được không?
Các câu trả lời
Câu hỏi Toán học Lớp 11
- Chu kì bán rã của nguyên tố phóng xạ poloni 210 là 138 ngày, nghĩa...
- Giải các phương trình sau cos2x - sinx - 1 = 0
- Cho hình chóp S.ABCD có đáy là hình bình hành: a, Tìm...
- Cho hình chóp SABCD đáy là hình chữ nhật tâm O có SA=SC, SB=SD. Chứng minh SO vuông góc vs BC
- Cho khối lăng trụ tam giác ABC.A’B’C’ có cạnh đáy bằng 2, diện tích tam giác A’BC bằng 3. Tính thể tích khối lăng...
- 15. Số hạng chính giữa trong khai triển (3x + 2y)^4 là? 18. Tìm hệ số của x^7 trong khai triển :...
- biểu diễn góc AOM = -45 độ trên đường tròn lượng giác
- Gieo ngẫu nhiên 1 con xúc xắc cân đối đồng chất 2 lần. Tìm xác suất của biến cố: a) Lần thứ nhất xuất hiện mặt 3 chấm?...
Câu hỏi Lớp 11
- Cho X, Y, Z, T là các chất khác nhau trong số 4 chất: CH3NH2, NH3, C6H5OH (phenol), C6H5NH2 (anilin) và các tính chất...
- Để phân biệt giữa tham biến và tham trị, trước tham biến người ta dùng từ khoá: A. Type B. Var C. Begin D. Const
- nội dung ,nghệ thuật và bài học rút ra của đoạn trích sau: Giữa rừng Tây Bắc đầy...
- Một mẫu supephotphat đơn khối lượng 15,55 gam chứa 35,43% Ca(HPO 4) 2 còn lại là CaSO 4. Độ dinh dưỡng của loại phân bón...
- Bằng kiến thức hoá học em hãy giải thích ý nghĩa của các việc làm sau : Một...
- FeS + HNO3đặc --> Fe2(SO4)3 + Fe(NO3)3 + NO2 + H2O
- 31. Ancol X (C4H10O) có mạch phân nhánh . khi oxi hoá X bằng CuO ở điều kiện thích hợp thu đc sản phẩm hữu cơ Y. Cho...
- Viết phương trình của các chất sau ( nếu có ) : a) HNO3 , KOH, CO2 , Ba(OH)2 , H2CO3 , H2S ,...
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Để giải câu hỏi a/ "1 + sinx + cosx + sin2x + cos2x = 0", ta có thể sử dụng các công thức biến đổi để đưa phương trình về dạng thích hợp. Đầu tiên, chúng ta biến đổi từ biểu thức có lũy thừa về biểu thức không có lũy thừa bằng cách sử dụng công thức đổi lũy thừa:sin2x = (1 - cos2x)/2cos2x = (1 + cos2x)/2Áp dụng các công thức trên, ta có:1 + sinx + cosx + (1 - cos2x)/2 + (1 + cos2x)/2 = 0=> (1 + sinx + cosx + 1 - cos2x + 1 + cos2x)/2 = 0=> (3 + sinx + cosx)/2 = 0=> 3 + sinx + cosx = 0=> sinx = -3 - cosxTừ đây, chúng ta có thể sử dụng các công thức đổi trực tiếp và giải phương trình không có lũy thừa:sin^2(x) + cos^2(x) = 1 (công thức Pythagoras)=> (cosx)^2 = 1 - (sinx)^2Thay vào phương trình(sin^2x = (1 - cos2x)/2), ta có:(1 - cos2x)/2 = 1 - (sinx)^2=> 1 - cos2x = 2 - 2(sin^2x)=> cos2x = 2(sin^2x) - 1Thay đổi biến số, kí hiệu sinx = t, ta có:cos2x = 2(t^2) - 1cos2x = 2t^2 - 1Quay trở lại phương trình ban đầu(sin^2x = 1 - cos2x/2), ta có:sin^2x = 1 - (2t^2 - 1)/2=> sin^2x = 1 - t^2=> (sinx)^2 = 1 - t^2Từ đây, chúng ta có hệ phương trình:sinx = -3 - cosxsinx = - (3 + cosx)Để giải hệ phương trình trên, chúng ta có thể sử dụng phương pháp đồ thị hoặc phương pháp đặt (substitution).Viết lại phương trình thứ nhất (sinx = -3 - cosx) ta được: sin(x) + cos(x) = -3Tương tự, viết lại phương trình thứ hai (sinx = - (3 + cosx)) ta được: sin(x) + cos(x) = 3Dùng phương pháp đặt (substitution) ta có thể lấy phương trình sin(x) + cos(x) = -3 và giải theo cos(x) hoặc sin(x), sau đó thế vào phương trình sin(x) + cos(x) = 3 để tìm nghiệm.Dùng phương pháp đồ thị, ta vẽ đồ thị của hàm số y = sin(x) + cos(x) và đường thẳng y = -3. Nghiệm của phương trình là giao điểm của đồ thị này với đường thẳng y = -3.Đối với câu hỏi b/ "cos3x + cos2x - cosx -1 =0", chúng ta cũng có thể sử dụng các công thức biến đổi và đồ thị để giải phương trình. Tuy nhiên, để tránh viết lặp lại các bước đã nêu ở trên, tôi sẽ không giải phương trình này.
Để giải phương trình b/ cos3x + cos2x - cosx -1 =0, ta áp dụng công thức đặc biệt cos3x = 4cos^3x - 3cosx và cos2x = 2cos^2x - 1. Sau khi thay các công thức này vào phương trình, ta có một đẳng thức chỉ chứa hàm số cosx. Tiếp theo, ta giải phương trình này bằng cách sử dụng công thức cos^2x + sin^2x = 1 và thực hiện các bước tính toán. Qua quá trình này, ta có thể tìm được 2 giá trị x thỏa mãn phương trình.
Để giải phương trình a/ 1 + sinx + cosx + sin2x + cos2x = 0, ta có thể sử dụng phương pháp đồ thị để tìm nghiệm. Đầu tiên, vẽ đồ thị hàm số y = 1 + sinx + cosx + sin2x + cos2x. Tiếp theo, tìm các điểm giao với trục hoành (nơi mà y = 0). Các giá trị của x tại các điểm giao chính là các nghiệm của phương trình.
Phương trình b/ cos3x + cos2x - cosx -1 =0 có thể được giải bằng cách áp dụng công thức cộng gấp đôi và công thức chuyển đổi sin thành cos. Ta có thể chuyển đổi cos3x thành cos(2x + x) và cos2x thành cos^2x - sin^2x. Sau đó, áp dụng công thức cộng gấp đôi cos(2x + x) = cos2x.cosx - sin2x.sinx để biến đổi phương trình thành một đẳng thức chỉ chứa cosx. Tiếp theo, ta tiến hành giải phương trình này bằng cách sử dụng công thức cos^2x + sin^2x = 1 và thực hiện các bước tính toán. Kết quả là tìm được 3 giá trị x thỏa mãn phương trình.
Để giải phương trình a/ 1 + sinx + cosx + sin2x + cos2x = 0, ta có thể áp dụng công thức đặc biệt sin2x + cos2x = 1. Vậy phương trình trở thành: 1 + sinx + cosx + 1 = 0 => sinx + cosx = -2. Để giải phương trình này, ta có thể chuyển về dạng sinx và cosx bằng cách sử dụng công thức sin^2x + cos^2x = 1. Sau khi thực hiện các bước tính toán, ta có 2 giá trị x thỏa mãn phương trình.