Cmr a^4 + b^4 >= a^3b + ab^3
Mọi người ơi, mình đang rối bời không biết làm thế nào ở đây. Bạn nào đi qua cho mình xin ít hint với!
Các câu trả lời
Câu hỏi Toán học Lớp 8
- Vẽ sơ đồ bằng chữ mô tả quá trình (sự thay đổi về trạng thái, kích thước, …)...
- Ta đã biết kết quả của phép chia số nguyên a cho số nguyên b khác 0 được gọi...
- Cho tam giác ABC vuông tại A, AB=9cm, AC=12cm. Vẽ đường cao AH(H thuộc BC). a) Chứng minh tam giác...
- ss các trường hợp đồng dạng của tam giác với các trường hợp = nhau của tam giác (nêu lên điểm giống và khác)
- Write a conditional sentences type 2 for each situation. 1. People throw rubbish in the street. The street doesn't...
- Biến đổi các biểu thức hữu tỉ thành phân thức: x x - 1 - x + 1 x x x + 1 - x - 1 x
- Cho hình vuông ABCD. Gọi E; F và K lần lượt là trung điểm của AB; BC và CD. Gọi M...
- cho A={[2x/2x(x-1)+3-3x]-5/2x-3}:5-3x/1-x a>tìm để biểu thức A có nghĩa và rút gọn...
Câu hỏi Lớp 8
- So sánh sự khác nhau về đặc điểm sông ngòi khu vực Đông Á, Nam Á,...
- em hãy viết đoạn văn khoảng 10 đến 12 dòng trình bày suy nghĩ của bản...
- Vì sao sao nói: “ Đồi núi là bộ phận quan trọng nhất trong cấu trúc địa...
- Biện pháp đấu tranh của phong trào Đông Du; Đông Kinh nghĩa thục; cuộc vận động Duy...
- Ex1: Complete these sentences with -ING or -ED 1, The girl is playing the piano. She is Mai 2, The people are waiting...
- Give the correct form of the word in brackets to complete each sentence. 1. A lot of toys encourage children’s...
- Cho mik hỏi, bên các bn ai thi HSG Sinh 8 cấp huyện chx? Cho mik tham khảo đề vs ạ? Mik gần thi òi...
- Cho dung dịch chứa 16,25g muối chloride của kim loại M tác dụng với 150ml dung dịch NaOH vừa đủ,thu được 10,07...
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Để giải câu hỏi này, ta có thể sử dụng một số phương pháp khác nhau.Phương pháp 1: Sử dụng định lí AM-GMTa có: a^4 + a^4 + b^4 + b^4 >= 4(a^4b^4)^(1/4) = 4abVì a^4 + a^4 + b^4 + b^4 = 2(a^4 + b^4) >= 4abNên a^4 + b^4 >= a^3b + ab^3Phương pháp 2: Sử dụng điều kiện cần và đủ để hàm số đạt giá trị nhỏ nhấtTa xét hàm số f(x) = x^4 - x^3b - ab^3 (với x >= 0)Để tìm giá trị nhỏ nhất của hàm số này, ta sẽ xem xét đạo hàm f'(x) và tìm các điểm cực trị của hàm số.f'(x) = 4x^3 - 3x^2bĐiểm cực trị của hàm số là nghiệm của phương trình f'(x) = 04x^3 - 3x^2b = 0x(4x - 3b) = 0=> x = 0 hoặc x = 3b/4Khi x = 0, ta có f(0) = 0^4 - 0^3b - ab^3 = -ab^3 < 0Khi x = 3b/4, ta có f(3b/4) = (3b/4)^4 - (3b/4)^3b - ab^3 > 0Vậy hàm số f(x) không có điểm cực trị và nội dung của bài toán được chứng minh.Đáp án: a^4 + b^4 >= a^3b + ab^3
Câu trả lời 1:Để chứng minh a^4 + b^4 >= a^3b + ab^3, ta có thể sử dụng bất đẳng thức AM-GM.Áp dụng bất đẳng thức AM-GM cho mỗi cặp số (a^4, b^4) ta được:(a^4 + b^4)/2 ≥ √(a^4 * b^4)⇒ a^4 + b^4 ≥ 2 * ab^2Áp dụng lần thứ hai cho cặp số (ab^2, ab^2) ta có:(ab^2 + ab^2)/2 ≥ √(ab^2 * ab^2)⇒ ab^2 + ab^2 ≥ 2 * a * (b^2)^(1/2)⇒ ab^2 + ab^2 ≥ 2ab^2Từ hai bất đẳng thức trên, ta có:a^4 + b^4 ≥ 2 * ab^2 ≥ 2ab^2⇒ a^4 + b^4 ≥ 2ab^2Dấu bằng xảy ra khi và chỉ khi a = b.Vậy, a^4 + b^4 ≥ a^3b + ab^3 đúng với mọi giá trị của a và b.Câu trả lời 2:Cũng từ bất đẳng thức AM-GM, ta có:(a^4 + b^4)/2 ≥ √(a^4 * b^4)⇒ a^4 + b^4 ≥ 2 * (a^4 * b^4)^(1/2)Ta sẽ chứng minh rằng (a^4 * b^4)^(1/2) ≥ a^3b + ab^3.Ta có:(a^4 * b^4)^(1/2) ≥ a^3b + ab^3⇔ (ab^2) * (a^2b^2)^(1/2) ≥ a^3b + ab^3⇔ ab^2 * ab ≥ a^3b + ab^3⇔ a^2b^3 ≥ a^3b + ab^3⇔ a^2b^3 - a^3b - ab^3 ≥ 0⇔ ab^2(b - a) - ab(b^2 - a^2) ≥ 0⇔ ab^2(b - a) - ab(b - a)(b + a) ≥ 0⇔ ab(b - a)(b + a - b) - ab(b - a)(b + a) ≥ 0⇔ ab(b - a)[1 - (b + a)] ≥ 0⇔ ab(b - a)(1 - (b + a)) ≥ 0⇔ ab(b - a)(a + b - 1) ≥ 0Giả sử a ≥ b.Nếu a > 1, ta có b > 1 và a + b - 1 > 0, từ đó ab(b - a)(a + b - 1) > 0, nên bất đẳng thức ban đầu đúng.Nếu a ≤ 1, ta có a + b - 1 ≤ 1 + b - 1 = b, từ đó ab(b - a)(a + b - 1) ≥ 0, nên bất đẳng thức ban đầu đúng.Với trường hợp b ≥ a, tương tự ta cũng chứng minh được bất đẳng thức ban đầu đúng.Vậy, a^4 + b^4 ≥ a^3b + ab^3 đúng với mọi giá trị của a và b.