Giải bất phương trình sau:
x2 - 8x - 9 ≥ 0
Mọi người ạ, mình rất cần sự giúp đỡ của các Bạn để giải quyết câu hỏi này. Cám ơn các Bạn nhiều lắm!
Các câu trả lời
Câu hỏi Toán học Lớp 9
- so sánh căn 7 + căn 15 và 7
- tìm m để (p) và (d) cắt nhau tại 2 điểm phân biệt nằm khác phía trục tung và...
- Cho $\triangle A B C$ nhọn co $A B<A C$ nội tiếp đường trờn $(O ; R)$, các đường cao $A D, B E, C F$ 1)...
- Một khu vườn hoa ở công viên có dạng hình tròn bán kính 15m. Người ta...
- Câu 40: Cho tam giác đều ABC nội tiếp đường tròn (O; 2cm). Độ dài cạnh của tam giác là
- Tìm tất cả các số nguyên n sao cho A= \(2^9+2^{13}+2^n\) là số chính phương
- Cho đường thẳng (d): y=mx-m+1 và parabol (P); y=x2 a, chứng minh (d) và (P) luôn có điểm...
- x ^2 - 2 (m +1 )x -2 (m +5 ) =0 (1 ) a ) chứng minh phương trình (1 ) luôn có hai nghiệm x1 ,...
Câu hỏi Lớp 9
- 1. Dãy chất đều là muối : A. H2SO3 , HNO3 , HCl , H2SO4 B. Na2SO3 , CaCO3 , AlCl3 , MgSO4 C. SO2 ,...
- Nhan đề “Lặng lẽ Sa Pa” có ý nghĩa như thế nào ?
- EX1:Change into reported speech. 1.He said"I have already read this book" =>He...
- Complete the second sentence so that it has a similar meaning to the first sentence 1. The wounded persons were taken...
- - Thế nào là về một sự việc, hiện tượng đời sống? Kể tên 1 vài sự việc hiện tượng trong đời sống ở địa phương của em?...
- Trong truyện ngắn "Lặng lẽ Sa Pa" ,bác lái xe giới thiệu ông hoạ sĩ ,cô kĩ sư về anh thanh niên là "Người cô độc nhất...
- Tại sao F2 có tỉ lệ KH 3:1 , 9:3:3:1
- Write a passage talk about the benefits of the Internet.
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Phương pháp giải bất phương trình x2 - 8x - 9 ≥ 0 là:Bước 1: Giải phương trình x2 - 8x - 9 = 0 để tìm các điểm cực trị của đồ thị. Phương trình trên có dạng x2 - 8x - 9 = (x - 9)(x + 1) = 0. Từ đó suy ra x = 9 hoặc x = -1.Bước 2: Vẽ đồ thị y = x2 - 8x - 9. Đồ thị có 2 điểm cực trị là (-1, -18) và (9, 0).Bước 3: Xác định đồ thị của bất phương trình x2 - 8x - 9 ≥ 0 nằm trên trục hoành như thế nào từ đồ thị đã vẽ. Khi x nằm trong khoảng [-1, 9], đồ thị nằm phía trên hoặc trùng với trục hoành, do đó bất phương trình x2 - 8x - 9 ≥ 0 khi x thuộc khoảng [-1, 9].Vậy nên, nghiệm của bất phương trình x2 - 8x - 9 ≥ 0 là x ∈ [-1, 9].
Để giải bất phương trình x^2 - 8x - 9 ≥ 0, ta có thể sử dụng phương pháp kỹ thuật số học. Dựa vào định lý điểm uốn, ta xác định được hình dáng của đồ thị của hàm số y = x^2 - 8x - 9. Sử dụng thông tin về điểm uốn và dấu của hàm số tại các điểm chính tắc, ta có thể xác định nghiệm của bất phương trình này.
Để giải bất phương trình x^2 - 8x - 9 ≥ 0, ta có thể sử dụng phương pháp giải theo dấu của hàm số. Đầu tiên, tìm các điểm chính tắc của hàm số bằng cách giải phương trình x^2 - 8x - 9 = 0. Tiếp theo, sử dụng các khoảng điểm chính tắc và kiểm tra dấu của hàm số tại các khoảng này để xác định các nghiệm của bất phương trình.
Để giải bất phương trình x^2 - 8x - 9 ≥ 0, ta cần tìm các khoảng giá trị của x thỏa mãn điều kiện này. Đầu tiên, ta thực hiện phân tích biểu thức x^2 - 8x - 9 thành (x - 9)(x + 1) ≥ 0. Tiếp theo, ta vẽ đồ thị hàm số y = (x - 9)(x + 1) và xác định các khoảng giá trị của x mà hàm số này lớn hơn hoặc bằng 0.
Để giải bài toán trên, trước hết chúng ta cần xác định diện tích của hình vuông. Ta gọi cạnh hình vuông là a.Vì hai cạnh OB và OI có hiệu là 7 cm nên ta có thể lập phương trình: \(|OB - OI| = 7\) (vì chúng cùng nằm trên đường chéo của hình vuông nên chúng không thể âm) => \(|a - \frac{a\sqrt{2}}{2}| = 7\) (với \(OI = \frac{a\sqrt{2}}{2}\))Giải phương trình trên, ta sẽ tìm được cạnh của hình vuông là a = 14 cm.Diện tích của hình vuông là \(a^2 = 14^2 = 196 cm^2\).Vì bốn tam giác vuông bằng nhau, nên diện tích của mỗi tam giác vuông là \(\frac{196}{4} = 49 cm^2\).Do đó, diện tích của hình hoa (tính từ hình vuông ban đầu) sẽ là \(196 - 4 \times 49 = 196 - 196 = 0 cm^2\).Vậy diện tích của hình hoa là 0 cm2.