tìm số nguyên tố p,q sao cho p^q+2^p+3 là số nguyên tố
Làm ơn, mình thực sự cần ai đó chỉ dẫn giúp mình giải quyết câu hỏi này. Bất cứ sự giúp đỡ nào cũng sẽ được đánh giá cao!
Các câu trả lời
Câu hỏi Toán học Lớp 6
- Bài 1 : Tính các tổng sau : a) S=1-2+3-4+...+99-100 b) S= -1+2-3+4-...-99+10...
- Giá vé tour du lịch Sài Gòn Côn Đảo hai ngày một đêm...
- 1 nông trại nuôi bò và trâu ,số bò có 195 con và chiếm 65% tổng...
- 1, các chi tiết hoang đường kì ảo trong câu chuyện con rồng cháu tiên 2 , hãy chỉ ra sụ thật lịch sử trong...
Câu hỏi Lớp 6
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Nếu p lẻ \(\Rightarrow p^q\) lẻ \(\Rightarrow p^q+3\) chẵn
Mà \(2^p\) luôn chẵn \(\Rightarrow p^q+2^p+3\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (ktm)
\(\Rightarrow p\) chẵn \(\Rightarrow p=2\)
\(\Rightarrow2^q+2^2+3=2^q+7\) là số nguyên tố
- Nếu q lẻ \(\Rightarrow q=2k+1\Rightarrow2^q+7=2^{2k+1}+7=2.4^k+7\)
Do \(4\equiv1\left(mod3\right)\Rightarrow4^k\equiv1\left(mod3\right)\Rightarrow2.4^k\equiv2\left(mod3\right)\)
\(\Rightarrow2.4^k+7\) chia hết cho 3 \(\Rightarrow\) là hợp số (không thỏa mãn)
\(\Rightarrow q\) chẵn \(\Rightarrow q=2\)
Vậy \(p=q=2\)