Lớp 6
Lớp 1điểm
1 năm trước
Đỗ Bảo Phương
Mời thí sinh CLICK vào liên kết hoặc ảnh bên dưới Mở ứng dụng Shopee để tiếp tục làm bài thi
https://s.shopee.vn/AKN2JyAJAw
kinhthu.com và đội ngũ nhân viên xin chân thành cảm ơn!

tìm số nguyên tố p,q sao cho p^q+2^p+3 là số nguyên tố  
Làm ơn, mình thực sự cần ai đó chỉ dẫn giúp mình giải quyết câu hỏi này. Bất cứ sự giúp đỡ nào cũng sẽ được đánh giá cao!

Hãy luôn nhớ cảm ơnvote 5 sao

nếu câu trả lời hữu ích nhé!

Các câu trả lời

Nếu p lẻ \(\Rightarrow p^q\) lẻ \(\Rightarrow p^q+3\) chẵn

Mà \(2^p\) luôn chẵn \(\Rightarrow p^q+2^p+3\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (ktm)

\(\Rightarrow p\) chẵn \(\Rightarrow p=2\)

\(\Rightarrow2^q+2^2+3=2^q+7\) là số nguyên tố

- Nếu q lẻ \(\Rightarrow q=2k+1\Rightarrow2^q+7=2^{2k+1}+7=2.4^k+7\)

Do \(4\equiv1\left(mod3\right)\Rightarrow4^k\equiv1\left(mod3\right)\Rightarrow2.4^k\equiv2\left(mod3\right)\)

\(\Rightarrow2.4^k+7\) chia hết cho 3 \(\Rightarrow\) là hợp số (không thỏa mãn)

\(\Rightarrow q\) chẵn \(\Rightarrow q=2\)

Vậy \(p=q=2\)

Hãy giúp mọi người biết câu trả lời này thế nào?
51 vote
Cảm ơn 1Trả lời.
Câu hỏi Toán học Lớp 6
Câu hỏi Lớp 6

Bạn muốn hỏi điều gì?

Đặt câu hỏix
  • ²
  • ³
  • ·
  • ×
  • ÷
  • ±
  • Δ
  • π
  • Ф
  • ω
  • ¬
0.78979 sec| 2267.297 kb