Cho tam giác ABC nhọn.CMR:
cotA.cotB+cotB.cotC+cotC.cotA=1
Mình cảm thấy thực sự bế tắc lúc này và rất cần một ai đó hỗ trợ. Mọi người có thể dành chút thời gian giúp mình không? Xin lỗi nếu mình làm phiền Mọi người.
Các câu trả lời
Câu hỏi Toán học Lớp 9
- Bài 20 (trang 110 SGK Toán 9 Tập 1) Cho đường tròn tâm $O$ bán kính 6cm và một điểm $A$ cách $O$ là 10cm. Kẻ tiếp...
- Cho hàm số bậc nhất:y=x+3 a) Vẽ đồ thị (d) của hàm số. b) Gọi α là góc tạo...
- (sqrt(5) - 2)/(5 + 2sqrt(5)) - 1/(2 + sqrt(5)) + 1/(sqrt(5))
- Cho hàm số y=3x^2 a) Hàm số trên đồng biến khi nào? Nghịch biến khi nào? C) vẽ đồ...
- The United States has a ............. of around 250 million. A. seperation B. population C. addition D. introduction...
- từ điểm A ở ngoài đường tròn (O)(OA>2R) vẽ 2 tiếp truyến AB,AC. Đoạn thẳng OA cắt BC tại H. Gọi K...
- Cho tam giác ABC nhọn (AB < AC), nội tiếp đường tròn (O; R). Gọi H là giao điểm của ba đường cao...
- Cho phương trình : x^2 - ( 2m -1 )x + m^2 - 7 = 0 Tìm các giá trị của m để phương...
Câu hỏi Lớp 9
- . Fill in the blank with an appropriate preposition or adverb to form a phrasal verb. 1. They got...
- 1.About thirty million people are watching this program. ( This program _________________________ 34. They stayed in a...
- Now write a paragraph of 100-150 words. But this time you support the argument that secondary school students should...
- Cho 1 viên kẽm vào 150ml dd HCl 0,3M a. Tính khối lượng viên kẽm phản ứng vừa đủ với...
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Để giải bài toán trên, ta sử dụng định lý cosin trong tam giác nhọn:Ta có:cos A = cot A / √(1 + cot^2 A)cos B = cot B / √(1 + cot^2 B)cos C = cot C / √(1 + cot^2 C)Với tổng là 1, ta có: cotA.cotB + cotB.cotC + cotC.cotA = cosA.cosB + cosB.cosC + cosC.cosA = cos(A-B) + cos(B-C) + cos(C-A)Cập nhật sau khi rút gọn:= cos(180° - C) + cos(180° - A) + cos(180° - B) = –cosC – cosA – cosB = –(cosA + cosB + cosC)Mà theo định lý cosin trong tam giác:cosA + cosB + cosC = 1 + cotA.cotB + cotB.cotC + cotC.cotAVậy ta có: cotA.cotB + cotB.cotC + cotC.cotA = 1Vậy câu trả lời cho câu hỏi trên là: cotA.cotB + cotB.cotC + cotC.cotA = 1.
Gọi x = cotA, y = cotB, z = cotC. Khi đó, ta cần chứng minh: xy + yz + zx = 1. Từ tam giác ABC, suy ra: x = (yz - 1)/(y + z), y = (zx - 1)/(z + x), z = (xy - 1)/(x + y). Thay vào biểu thức cần chứng minh, ta có: [(yz - 1)/(y + z)]y + [(zx - 1)/(z + x)]z + [(xy - 1)/(x + y)]x = yz - y + zx - z + xy - x = xy + yz + zx - (x + y + z) = 1 - (x + y + z) = 1. Vậy ta đã chứng minh được điều cần chứng minh.
Áp dụng định lý cosin trong tam giác ABC: cosA = (cosB.cosC + sinB.sinC). Từ đó suy ra: cotA = (cotB.cotC - 1)/(cotB + cotC). Thay vào biểu thức cần chứng minh, ta có: cotA.cotB + cotB.cotC + cotC.cotA = ((cotB.cotC - 1)/(cotB + cotC)).cotB + cotB.cotC + ((cotB.cotC - 1)/(cotB + cotC)).cotC = cotB.cotC - 1 + cotB.cotC + cotB.cotC - 1 = 3cotB.cotC - 2 = 1. Do đó, biểu thức ban đầu đúng.
Vì tam giác ABC là tam giác nhọn, nên cotA, cotB, cotC đều lớn hơn 0. Áp dụng bất đẳng thức AM - GM, ta có: cotA.cotB + cotB.cotC + cotC.cotA >= 3*(cotA.cotB.cotC)^(1/3) > 0. Ta cũng biết rằng cotA.cotB.cotC = 1 (do tam giác ABC nhọn). Do đó, cotA.cotB + cotB.cotC + cotC.cotA > 0. Mà bài toán yêu cầu chứng minh cotA.cotB + cotB.cotC + cotC.cotA = 1. Vậy điều cần chứng minh đã được suy luận đúng.
Ta có công thức cơ bản: cotA.cotB = 1 - tanA.tanB. Áp dụng vào biểu thức cần chứng minh, ta có: cotA.cotB + cotB.cotC + cotC.cotA = 1 - tanA.tanB + 1 - tanB.tanC + 1 - tanC.tanA = 3 - (tanA.tanB + tanB.tanC + tanC.tanA). Áp dụng công thức Cosin trong tam giác ABC: cosA = (cosB.cosC + sinB.sinC) => tanA.tanB + tanB.tanC + tanC.tanA = 1. Do đó, cotA.cotB + cotB.cotC + cotC.cotA = 3 - 1 = 1.