Một người đi xe máy từ A với thời gian dự định là 5 giờ, nhưng khi đi được nữa đoạn đường thì người ấy tăng 12km/h nên đến sớm hơn thời gian dự định là 30 phút. Tính quãng đường và vận tốc dự định.
Mọi người ơi, mình đang vướng mắc một chút, có ai có kinh nghiệm có thể chỉ giáo mình cách giải quyết câu hỏi này không?
Các câu trả lời
Câu hỏi Toán học Lớp 8
Câu hỏi Lớp 8
Bạn muốn hỏi điều gì?
Gọi độ dài quãng đường AB là x (km) với x>0
Vận tốc dự định của người đó là: \(\dfrac{x}{5}\) (km/h)
Đổi 30 phút =0,5 giờ
Thời gian người đó đi hết nửa đoạn đường còn lại: \(\dfrac{5}{2}-0,5=2\) (giờ)
Vận tốc trên nửa đoạn đường còn lại: \(\dfrac{x}{2}:2=\dfrac{x}{4}\) (km/h)
Do người đó tăng tốc thêm 12km/h nên vận tốc trên nửa đoạn sau lớn hơn vận tốc dự định 12km/h, ta có pt:
\(\dfrac{x}{4}-\dfrac{x}{5}=12\)
\(\Leftrightarrow\dfrac{x}{20}=12\)
\(\Leftrightarrow x=240\left(km\right)\)
Vậy quãng đường AB dài 240km và vận tốc dự định là \(\dfrac{240}{5}=48\) (km/h)