Khai triển hằng đẳng thức \(a^4+b^4\)
Xin lỗi nếu mình làm phiền, nhưng mình đang mắc kẹt với câu hỏi này và mình thật sự cần một ai đó giúp đỡ. Mọi người có thể dành chút thời gian để hỗ trợ mình được không?
Các câu trả lời
Câu hỏi Toán học Lớp 8
- You can go home if you ____ your work A. finish B. have finished C. are finished D. finishing
- Số sách quyển vở ngăn 1 bằng 2/3 số sách quyển vở ở ngăn 2. Nếu lấy bớt 10 quyển ở ngăn 2 và...
- x² + 2x + 3 = 0 ( chứng minh phương trình vô nghiệm)
- giải hộ mk bài này với tính diện tích hình thoi có cạnh dài 6cm và một trong các góc của nó có số đo là 60 độ
Câu hỏi Lớp 8
- từ bài thơ "mẹ" em hãy viết đoạn văn diễn dịch (khoảng 200 chữ) trình bày...
- Tại sao lúa mì, cừu và bông chủ yếu phân bố ở sâu trong nội địa?
- So sánh quá trình hình thành và phát triển của châu thổ...
- Kẻ bảng vào vở theo mẫu sau và tìm từ có yếu tố Hán Việt tương ứng: Yếu...
- thuyết minh về đền thờ trần hưng đạo cần gấp cần gấp !!
- Đọc đoạn trích sau rồi thực hiện các yêu cầu bên dưới: Hôm sau lão Hạc sang nhà tôi. Vừa thấy tôi, lão báo...
- trong văn bản "Tôi đi học" tác giả Thanh Tịnh khi tả học trò nhỏ tuổi lần đàu tới...
- Nắm được đặc điểm, chức năng của câu trần thuật, câu nghi vấn, câu cảm thán, câu cầu...
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Để khai triển hằng đẳng thức \(a^4+b^4\), chúng ta có thể sử dụng công thức khai triển tổng lũy thừa của một binomial bậc 4, hay còn được gọi là công thức Newton.Công thức Newton cho khai triển tổng lũy thừa của binomial \( (x+y)^n \) có dạng:\[ (x+y)^n = \binom{n}{0}x^n y^0 + \binom{n}{1}x^{n-1}y^1 + \binom{n}{2}x^{n-2}y^2 + \ldots + \binom{n}{n-1}x^1y^{n-1} + \binom{n}{n}x^0 y^n \]Áp dụng công thức Newton vào \(a^4+b^4\), ta có:\[ (a+b)^4 = \binom{4}{0}a^4 b^0 + \binom{4}{1}a^3 b^1 + \binom{4}{2}a^2 b^2 + \binom{4}{3}a^1 b^3 + \binom{4}{4}a^0 b^4 \]\[ = a^4 + 4a^3 b + 6a^2 b^2 + 4ab^3 + b^4 \]Vậy, \(a^4+b^4 = (a+b)^4 - 4a^3 b - 6a^2 b^2 - 4ab^3\).Đây là cách giải bằng công thức Newton. Ngoài ra, ta còn có thể giải bằng cách sử dụng công thức khai triển tổng lũy thừa của binomial bậc 2 liên kết với công thức khai triển tổng lũy thừa của binomial bậc 2 một lần nữa.
Để khai triển \(a^4+b^4\), ta áp dụng công thức khai triển tổng lũy thừa của một số:Cách 1:\(a^4+b^4\) = \((a^2)^2+(b^2)^2\) = \(a^2 \cdot a^2 + b^2 \cdot b^2\) = \((a^2+b^2)(a^2+b^2)\) = \((a^2+b^2)^2\)Cách 2:\(a^4+b^4\) = \((a^2)^2+(b^2)^2\) = \((a^2+b^2)^2 - 2a^2b^2\)Cách 3:\(a^4+b^4\) = \((a^2)^2+(b^2)^2\) = \((a^2 - 2ab + b^2)(a^2 + 2ab + b^2)\)Cách 4:\(a^4+b^4\) = \((a^2)^2+(b^2)^2\) = \((a^2 + b^2 - 2ab)(a^2 + b^2 + 2ab)\)Câu trả lời được viết dạng JSON:{ "content1": "(a^2+b^2)^2", "content2": "(a^2+b^2)^2 - 2a^2b^2", "content3": "(a^2 - 2ab + b^2)(a^2 + 2ab + b^2)", "content4": "(a^2 + b^2 - 2ab)(a^2 + b^2 + 2ab)"}