Tìm số hạng không chứa \(x\) của khai triển: \(\left(x\dfrac{2}{x}\right)^8\)
Mình đây, cần một chuyên gia tốt bụng giải cứu ngay lập tức! Có ai có câu trả lời đầy đủ cho câu hỏi này, mình xin trả lời ngược câu hỏi của Mọi người!
Các câu trả lời
Câu hỏi Toán học Lớp 11
- Cho dãy số (\(u_n\) ) xác định bởi: \(\left\{{}\begin{matrix}0< u_n<...
- Mark the letter A, B, C or D on your answer sheet to indicate the correct answer to each of the following questions. A...
- tìm ảnh của đường tròn (C) qua phép quay tâm O, góc quay 90 độ a) (C):...
- Số đường chéo của đa giác đều có 20 cạnh là A. 170 B. 190 C. 360 D. 380
- tìm m để y'≥0 với mọi x y=4x^3-(m+1)x^2-mx+4
- Tìm số hạng không chứa \(x\) của khai triển: \(\left(x\dfrac{2}{x}\right)^8\)
- Đạo hàm của hàm số y = sin 2 2 x trên ℝ là A. y' = -2cos4x B. y' = 2cos4x C. y' = -2sin4x D. y' = 2sin4x...
- Gieo ngẫu nhiên 1 con xúc xắc cân đối đồng chất 2 lần. Tìm xác suất của biến cố: a) Lần thứ nhất xuất hiện mặt 3 chấm?...
Câu hỏi Lớp 11
- Hãy kể tên một số ngành nghề phổ biến trong chăn nuôi ở nước ta.
- Thế nào là liên kết vùng? Qua ví dụ liên kết vùng Ma-xơ Rai-nơ, hãy cho biết ý nghĩa của việc phát triển các liên...
- Trong pascal, biểu diễn sqrt(x) có nghĩa là: A. Bình phương của x B. Căn bậc hai của x C. Giá trị tuyệt đối của x D....
- Năm 2005, dân số thế giới là 6.477 triệu người, trong đó các nước đang phát triển là 5.266 triệu người, chiếm bao nhiêu...
- Giới thiệu về những cảnh quan thiên nhiên em từng đến thăm
- Iodine bị phân hủy bởi nhiệt theo phản ứng sau: I2 (g) 2I (g) Ở 727oC hằng số cân bằng của phản ứng KC = 3...
- Hãy cho biết thành phần của dầu mỏ. Tại sao dầu mỏ lại không có nhiệt độ sôi nhất định? Có thể biểu thị thành phần của...
- Trong thời gian t, điện lượng chuyên qua tiết diện thăng của dây dần là q. Cường độ dòng điện không đổi được tính bằng...
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Để tìm số hạng không chứa \(x\) trong khai triển \(\left(x\dfrac{2}{x}\right)^8\), ta sử dụng công thức khai triển Newton:\((a+b)^n = C_n^0a^n b^0 + C_n^1a^{n-1}b^1 + C_n^2a^{n-2}b^2 + \ldots + C_n^n a^0 b^n\)Ở đây, ta có thể thấy trong \(\left(x\dfrac{2}{x}\right)^8\), ta có \(a = x\), \(b = \dfrac{2}{x}\) và \(n = 8\).Áp dụng công thức khai triển và loại bỏ các số hạng chứa \(x\), ta có:\(\left(x\dfrac{2}{x}\right)^8 = C_8^0x^8 \left(\dfrac{2}{x}\right)^0 + C_8^1x^7 \left(\dfrac{2}{x}\right)^1 + C_8^2x^6 \left(\dfrac{2}{x}\right)^2 + \ldots\)Ta có thể rút gọn các số hạng chứa \(x\):\(\left(x\dfrac{2}{x}\right)^8 = C_8^0 \cdot 1 + C_8^1 \cdot 2x + C_8^2 \cdot 4x^2 + \ldots\)Từ đó, ta thấy rằng các số hạng chứa \(x\) là \(C_8^1 \cdot 2x\), \(C_8^2 \cdot 4x^2\),...Vậy, số hạng không chứa \(x\) là \(C_8^0 \cdot 1 = 1\).Đáp số: Số hạng không chứa \(x\) trong khai triển của \(\left(x\dfrac{2}{x}\right)^8\) là 1.
Câu trả lời 1:Để tìm số hạng không chứa x trong khai triển: \(\left(x\dfrac{2}{x}\right)^8\), ta sử dụng chúng ta sẽ sử dụng công thức tổng quát cho khai triển của một biểu thức mũ bất kỳ:\((a+b)^n = \binom{n}{0}a^nb^0 + \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 + ... + \binom{n}{n-1}a^1b^{n-1} + \binom{n}{n}a^0b^n\)Áp dụng công thức trên vào khai triển \(\left(x\dfrac{2}{x}\right)^8\), ta có:\(\left(x\dfrac{2}{x}\right)^8 = \binom{8}{0}x^8\left(\dfrac{2}{x}\right)^0 + \binom{8}{1}x^7\left(\dfrac{2}{x}\right)^1 + \binom{8}{2}x^6\left(\dfrac{2}{x}\right)^2 + ... + \binom{8}{6}x^2\left(\dfrac{2}{x}\right)^6 + \binom{8}{7}x^1\left(\dfrac{2}{x}\right)^7 + \binom{8}{8}x^0\left(\dfrac{2}{x}\right)^8\)Để tìm số hạng không chứa x, ta chỉ quan tâm đến các số hạng có \(\dfrac{2}{x}\) mũ bằng 0. Tức là, ta chỉ cần xem các số hạng sau:\(\binom{8}{0}x^8\left(\dfrac{2}{x}\right)^0 = \binom{8}{0}x^8 = x^8\)Vậy số hạng không chứa x của khai triển \(\left(x\dfrac{2}{x}\right)^8\) là \(x^8\).Câu trả lời 2:Ta có thể sử dụng quy tắc mũ để giải bài toán này.Khi một biểu thức có dạng \((a \cdot b)^n\), ta có thể rút gọn thành \(a^n \cdot b^n\).Áp dụng quy tắc này vào khai triển \(\left(x\dfrac{2}{x}\right)^8\), ta có:\(\left(x\dfrac{2}{x}\right)^8 = x^8 \cdot \left(\dfrac{2}{x}\right)^8\)Từ đây, ta thấy rằng \(\left(\dfrac{2}{x}\right)^8\) không chứa x, vì chỉ có một mũ x trong khai triển ban đầu. Vậy số hạng không chứa x của khai triển \(\left(x\dfrac{2}{x}\right)^8\) là \(x^8 \cdot \left(\dfrac{2}{x}\right)^8\) hay đơn giản là \(\left(\dfrac{2}{x}\right)^8\).