Bài 2: Cho đường tròn (O; R) và một điểm S nằm bên ngoài sao cho OS = 3R Tử S, về hai tiếptuyến SE, SF và cát tuyển SAB với đường tròn đó (A nằm giữa B và S). Gọi H là trung điểm củadây AB.
a/ Chứng minh: 5 điểm S, E, H, O, F cùng năm trên một đường tròn.
b/ Chứng minh: ES² - SA. SB
c/Tính diện tích hình tròn ngoại tiếp từ giác SEOF, biết R = 2cm
d/ Vẽ đường tròn tâm S bán kính SE. Tính diện tích hình quạt tròn giới hạn 2 bán kính SE, SF và cung nhỏ EF
Mình biết là mọi người đều bận rộn, nhưng nếu Bạn nào có thể sắp xếp chút thời gian để hỗ trợ mình giải đáp câu hỏi này, mình sẽ rất biết ơn.
Các câu trả lời
Câu hỏi Toán học Lớp 9
Câu hỏi Lớp 9
Bạn muốn hỏi điều gì?
a/ Ta có: ∠SEF = ∠SOF = 90° (do SE, SF là tiếp tuyến của đường tròn (O; R))
Do đó: ∠EHF = ∠SEF + ∠SOF = 180°
Suy ra: E, H, F cùng nằm trên một đường tròn. Vì ∠EHF = 180° nên H là tâm đường tròn đi qua E, F.
Ta có: ∠SHO = ∠SEO + ∠EOF = 90° + 90° = 180°
Suy ra: S, H, O cùng nằm trên một đường tròn. Vì ∠SHO = 180° nên H là tâm đường tròn đi qua S, O.
Vậy: S, E, H, O, F cùng nằm trên một đường tròn.
b/ Ta có: ∠ESB = ∠EAB (do ES, EB là tiếp tuyến của đường tròn (O; R))
Do đó: ∆ESB ~ ∆EAB (theo góc - cạnh - góc)
Suy ra: ES/EA = SB/AB
Vì H là trung điểm của AB nên AH = HB = AB/2
Suy ra: ES² = EA.AB = 2EA.AH = SA.SB (do EA = SA - AH)
c/ Ta có: SO = 3R = 6cm
Do đó: d = 2SO = 12cm
Suy ra: Diện tích hình tròn ngoại tiếp từ giác SEOF là: π(d/2)² = π(12/2)² = 36π (cm²)
d/ Ta có: ∠SEF = 90°
Do đó: mỗi cung EF = 90°/360° = 1/4
Suy ra: Diện tích hình quạt tròn giới hạn 2 bán kính SE, SF và cung nhỏ EF là: 1/4π(SE)² = 1/4πR² = 1/4π(2)² = π (cm²