Giải phương trình sau: \(\sqrt[3]{{x + 2020}} + \sqrt[3]{{x + 2021}} + \sqrt[3]{{x + 2022}} = 0.\)
Xin lỗi làm phiền, nhưng Mọi người có thể giúp tôi giải đáp vấn đề này không? Tôi đang cần một chút sự giúp đỡ.
Các câu trả lời
Câu hỏi Toán học Lớp 9
- P = (x * sqrt(2))/(2sqrt(x) + x * sqrt(2)) + (sqrt(2x) - 2)/(x - 2) Giúp em với ạ.
- Bài 3 (trang 45 SGK Toán 9 Tập 1) Cho hai hàm số $y=2 x$ và $y=-2 x$. a) Vẽ trên cùng một mặt phẳng toạ độ đổ thị cửa...
- 2. Tìm giá trị của m để phương trình sau có 2 nghiệm cùng dấu. Khi đó 2 nghiệm...
- Cho hàm số: y=(m+1)x-3. (m#-1).Xác định m để: a) Hàm số đã cho đồng biến,nghịch biến...
- Phải pha thêm bao nhiêu ml nước vào bình đang chứa 200 ml sữa có chứa 5% chất...
- Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Ba đường cao AD, BE, CF cắt nhau tại H. M...
- Trong mặt phẳng tọa độ Oxy, cho đường thẳng d : y = x + 2013. Tìm tọa độ giao điểm của đường thẳng d với các trục tọa...
- Gọi dung dịch Ba(OH)2 là dung dịch A,K2CO3 là dung dịch B.Cho 200 ml dung dịch Ba(OH)2 tác dụng với 300...
Câu hỏi Lớp 9
- Wordform: The demand for more land for buiding has caused widespread...............(forest)
- Hãy viết bài văn thuyết minh về cây lúa có sử dụng yếu tố nghệ thuật
- ý nghĩa của sự liên kết giữa các nước tây âu
- Câu 37: Bổ túc sơ đồ phản ứng: Al(OH)3 ⎯⎯(1)→ Al2O3 ⎯⎯(2)→ Al2(SO4)3 ⎯⎯(3)→ AlCl3 A. (1) nhiệt phân, (2) dung dịch...
- Nhà thơ Tố Hữu viết: Bác Hồ ơi, chiếc áo nâu giản dị Màu quê...
- Hãy so sánh chỗ giống nhau và khác nhau về cấu tạo và hoạt động của đinamô xe...
- Mọi người ơi cho mk hỏi với Ý nghĩa quy luật đồng tính của Menđen là gì ? Mk đg cần gấp...
- Part 4: Read the text and look at the questions that follow it. In this reading comprehension, the questions are...
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Để giải phương trình trên, ta áp dụng một quy tắc chung trong giải các phương trình có dạng \(\sqrt[n]{a} + \sqrt[n]{b} = c\) với \(n\) là một số nguyên dương và \(a\), \(b\), \(c\) là các số thực không âm.Bước 1: Ta khai triển \(\sqrt[3]{x+2020}\) thành \(\sqrt[3]{(x+2020)(x^2 - x \cdot 2020 + 2020^2)} = \sqrt[3]{(x+2020)(x^2 - 2020x + 2020^2)}.\) Tương tự, ta có \(\sqrt[3]{x+2021} = \sqrt[3]{(x+2021)(x^2 - 2021x + 2021^2)}\) và \(\sqrt[3]{x+2022} = \sqrt[3]{(x+2022)(x^2 - 2022x + 2022^2)}.\)Bước 2: Thay các biểu thức trên vào phương trình ban đầu, ta có \(\sqrt[3]{(x+2020)(x^2 - 2020x + 2020^2)} + \sqrt[3]{(x+2021)(x^2 - 2021x + 2021^2)} + \sqrt[3]{(x+2022)(x^2 - 2022x + 2022^2)} = 0.\)Bước 3: Ta tiến hành gom nhóm các thành phần chứa x: \(\left(\sqrt[3]{(x^2 - 2020x + 2020^2)} + \sqrt[3]{(x^2 - 2021x + 2021^2)} + \sqrt[3]{(x^2 - 2022x + 2022^2)}\right) + 2020\sqrt[3]{x+2020} + 2021\sqrt[3]{x+2021} + 2022\sqrt[3]{x+2022} = 0.\)Bước 4: Đặt \(A = \sqrt[3]{(x^2 - 2020x + 2020^2)} + \sqrt[3]{(x^2 - 2021x + 2021^2)} + \sqrt[3]{(x^2 - 2022x + 2022^2)}.\) Khi đó, \(\sqrt[3]{x+2020} = -\frac{2021\sqrt[3]{x+2021} + 2022\sqrt[3]{x+2022}}{2020}\). Thay vào biểu thức ta được: \(A + 2020\left(-\frac{2021\sqrt[3]{x+2021} + 2022\sqrt[3]{x+2022}}{2020}\right) + 2021\sqrt[3]{x+2021} + 2022\sqrt[3]{x+2022} = 0.\)Bước 5: Giải phương trình \(\sqrt[3]{(x^2 - 2020x + 2020^2)} + \sqrt[3]{(x^2 - 2021x + 2021^2)} + \sqrt[3]{(x^2 - 2022x + 2022^2)} = 0\) (thay A thành 0), ta có các giá trị của x:\(x_1 = 4038\), \(x_2 = \frac{2021 \sqrt{2020} + 2020}{3}\), và \(x_3 = \frac{2021 \sqrt{2020} - 2020}{3}\) (dùng công thức Viète).Vậy, phương trình đã cho có 3 nghiệm là \(x_1 = 4038\), \(x_2 = \frac{2021 \sqrt{2020} + 2020}{3}\), và \(x_3 = \frac{2021 \sqrt{2020} - 2020}{3}\).
Cách 4: Đặt a = x + 2020, b = x + 2021, c = x + 2022. Ta có phương trình tương đương với căn bậc ba của a + căn bậc ba của b + căn bậc ba của c = 0. Áp dụng công thức số học tổng căn bậc ba ba số, ta có căn bậc ba của a + căn bậc ba của b + căn bậc ba của c = căn bậc ba của ((a + b + c) + 3.căn bậc ba của (a + b)(b + c)(c + a))). Thay a, b, c thành x, ta có phương trình căn bậc ba của (3x + 6063 + 3.căn bậc ba của P)) = 0. Vì căn bậc ba của một số không thể bằng 0, nên không có giá trị x nào thỏa mãn phương trình.
Cách 3: Đặt a = x + 2020, b = x + 2021, c = x + 2022. Ta có phương trình tương đương với căn bậc ba của a + căn bậc ba của b + căn bậc ba của c = 0. Áp dụng công thức số học tổng căn bậc ba ba số, ta có căn bậc ba của a + căn bậc ba của b + căn bậc ba của c = căn bậc ba của (a + b + c + 3.căn bậc ba của (a + b)(b + c)(c + a))). Thay a, b, c thành x, ta có phương trình căn bậc ba của (x + 6063) = 0. Vì căn bậc ba của một số không thể bằng 0, nên không có giá trị x nào thỏa mãn phương trình.
Cách 2: Đặt a = x + 2020, b = x + 2021, c = x + 2022. Ta có phương trình tương đương với căn bậc ba của a + căn bậc ba của b + căn bậc ba của c = 0. Áp dụng công thức số học căn bậc ba của tổng ba số, ta có (a + b + c) + 3(căn bậc ba của (a + b)(b + c)(c + a)) = 0. Đặt S = a + b + c và P = (a + b)(b + c)(c + a), ta có hệ thức S + 3(căn bậc ba của P) = 0. Như vậy, phương trình ban đầu trở thành S + 3(căn bậc ba của P) = 0. Thay a, b, c thành x, ta có phương trình S + 3(căn bậc ba của P) = 0. Giải hệ thức này ta được x = -6043.
Cách 1: Áp dụng định nghĩa căn bậc ba, ta có phương trình tương đương với (x + 2020) + (x + 2021) + (x + 2022) = 0. Giải phương trình ta được x = -6043.