Giải phương trình sau: \(\sqrt[3]{{x + 2020}} + \sqrt[3]{{x + 2021}} + \sqrt[3]{{x + 2022}} = 0.\)
Xin lỗi làm phiền, nhưng Mọi người có thể giúp tôi giải đáp vấn đề này không? Tôi đang cần một chút sự giúp đỡ.
Các câu trả lời
Câu hỏi Toán học Lớp 9
- Bài 8 . Cho parabol (P): y = -2x 2 và đường thẳng (d): y = x + m - 1. Tìm m để đường thẳng (d)...
- Cho tam giác ABC vuông tại A có AB = 6 cm, BC = 10 cm . Quay một vòng quanh cạnh AB cố định...
- cho tam giác ABC vuông tại A ( AB bé hơn AC ). Trên cạnh AC lấy điểm D và vẽ đường...
- ai lay nick ngoc rong online ko tui bo roi
- Rút gọn biểu thức: a)\(\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)...
- Cho tam giác ABC có ba góc nhọn (AB < AC) nội cao BD và CE cắt nhau tại H. b) Chứng...
- Bài 17 (trang 109 SGK Toán 9 Tập 1) Điền vào các chỗ trống (...) trong bảng sau (R là bán kính của đường tròn,...
- Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=12cm, HC=19,2cm. Tính AC, AH ?
Câu hỏi Lớp 9
- Hãy chỉ ra tác động tiêu cực của tin học đối với xã hội
- Câu 1. Vùng Đông Nam Bộ có điều kiện thuận lợi gì để phát triển càc...
- Life has changed a lot over the past 50 years, and there are many good pastimes which seem to be dying out. Work in...
- A mobile phone, also known as a cell phone, is one that we can use to make telephone calls to anyone from a great...
- Tại sao phải dùng phương pháp phả hệ trong nghiên cứu di truyền người? A. Phương pháp này đơn giản, dễ thực hiện, hiệu...
- 1/He said to the girl, “Can you play the piano?” => 2/The man asked the boy “Where do you live?” => 3/Tom said “ I...
- viết toppic nói với các chủ đề - Local environment - City life - Teen stress and...
- Viết công thức biểu diễn và phát biểu mối quan hệ giữa điện trở dây dẫn với độ dài tiết diện và vật liệu làm dây
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Để giải phương trình trên, ta áp dụng một quy tắc chung trong giải các phương trình có dạng \(\sqrt[n]{a} + \sqrt[n]{b} = c\) với \(n\) là một số nguyên dương và \(a\), \(b\), \(c\) là các số thực không âm.Bước 1: Ta khai triển \(\sqrt[3]{x+2020}\) thành \(\sqrt[3]{(x+2020)(x^2 - x \cdot 2020 + 2020^2)} = \sqrt[3]{(x+2020)(x^2 - 2020x + 2020^2)}.\) Tương tự, ta có \(\sqrt[3]{x+2021} = \sqrt[3]{(x+2021)(x^2 - 2021x + 2021^2)}\) và \(\sqrt[3]{x+2022} = \sqrt[3]{(x+2022)(x^2 - 2022x + 2022^2)}.\)Bước 2: Thay các biểu thức trên vào phương trình ban đầu, ta có \(\sqrt[3]{(x+2020)(x^2 - 2020x + 2020^2)} + \sqrt[3]{(x+2021)(x^2 - 2021x + 2021^2)} + \sqrt[3]{(x+2022)(x^2 - 2022x + 2022^2)} = 0.\)Bước 3: Ta tiến hành gom nhóm các thành phần chứa x: \(\left(\sqrt[3]{(x^2 - 2020x + 2020^2)} + \sqrt[3]{(x^2 - 2021x + 2021^2)} + \sqrt[3]{(x^2 - 2022x + 2022^2)}\right) + 2020\sqrt[3]{x+2020} + 2021\sqrt[3]{x+2021} + 2022\sqrt[3]{x+2022} = 0.\)Bước 4: Đặt \(A = \sqrt[3]{(x^2 - 2020x + 2020^2)} + \sqrt[3]{(x^2 - 2021x + 2021^2)} + \sqrt[3]{(x^2 - 2022x + 2022^2)}.\) Khi đó, \(\sqrt[3]{x+2020} = -\frac{2021\sqrt[3]{x+2021} + 2022\sqrt[3]{x+2022}}{2020}\). Thay vào biểu thức ta được: \(A + 2020\left(-\frac{2021\sqrt[3]{x+2021} + 2022\sqrt[3]{x+2022}}{2020}\right) + 2021\sqrt[3]{x+2021} + 2022\sqrt[3]{x+2022} = 0.\)Bước 5: Giải phương trình \(\sqrt[3]{(x^2 - 2020x + 2020^2)} + \sqrt[3]{(x^2 - 2021x + 2021^2)} + \sqrt[3]{(x^2 - 2022x + 2022^2)} = 0\) (thay A thành 0), ta có các giá trị của x:\(x_1 = 4038\), \(x_2 = \frac{2021 \sqrt{2020} + 2020}{3}\), và \(x_3 = \frac{2021 \sqrt{2020} - 2020}{3}\) (dùng công thức Viète).Vậy, phương trình đã cho có 3 nghiệm là \(x_1 = 4038\), \(x_2 = \frac{2021 \sqrt{2020} + 2020}{3}\), và \(x_3 = \frac{2021 \sqrt{2020} - 2020}{3}\).
Cách 4: Đặt a = x + 2020, b = x + 2021, c = x + 2022. Ta có phương trình tương đương với căn bậc ba của a + căn bậc ba của b + căn bậc ba của c = 0. Áp dụng công thức số học tổng căn bậc ba ba số, ta có căn bậc ba của a + căn bậc ba của b + căn bậc ba của c = căn bậc ba của ((a + b + c) + 3.căn bậc ba của (a + b)(b + c)(c + a))). Thay a, b, c thành x, ta có phương trình căn bậc ba của (3x + 6063 + 3.căn bậc ba của P)) = 0. Vì căn bậc ba của một số không thể bằng 0, nên không có giá trị x nào thỏa mãn phương trình.
Cách 3: Đặt a = x + 2020, b = x + 2021, c = x + 2022. Ta có phương trình tương đương với căn bậc ba của a + căn bậc ba của b + căn bậc ba của c = 0. Áp dụng công thức số học tổng căn bậc ba ba số, ta có căn bậc ba của a + căn bậc ba của b + căn bậc ba của c = căn bậc ba của (a + b + c + 3.căn bậc ba của (a + b)(b + c)(c + a))). Thay a, b, c thành x, ta có phương trình căn bậc ba của (x + 6063) = 0. Vì căn bậc ba của một số không thể bằng 0, nên không có giá trị x nào thỏa mãn phương trình.
Cách 2: Đặt a = x + 2020, b = x + 2021, c = x + 2022. Ta có phương trình tương đương với căn bậc ba của a + căn bậc ba của b + căn bậc ba của c = 0. Áp dụng công thức số học căn bậc ba của tổng ba số, ta có (a + b + c) + 3(căn bậc ba của (a + b)(b + c)(c + a)) = 0. Đặt S = a + b + c và P = (a + b)(b + c)(c + a), ta có hệ thức S + 3(căn bậc ba của P) = 0. Như vậy, phương trình ban đầu trở thành S + 3(căn bậc ba của P) = 0. Thay a, b, c thành x, ta có phương trình S + 3(căn bậc ba của P) = 0. Giải hệ thức này ta được x = -6043.
Cách 1: Áp dụng định nghĩa căn bậc ba, ta có phương trình tương đương với (x + 2020) + (x + 2021) + (x + 2022) = 0. Giải phương trình ta được x = -6043.