Chứng minh rằng không tồn tại 3 số thực a, b, c đôi một phân biệt thỏa mãn \(\dfrac{a}{a^2+9}\) =\(\dfrac{b}{b^2+9}\) =\(\dfrac{c}{c^2+9}\)
Chào các Bạn, mình đang gặp một chút vấn đề và thực sự cần sự trợ giúp của mọi người. Bạn nào biết cách giải quyết không, có thể chỉ giúp mình được không?
Các câu trả lời
Câu hỏi Toán học Lớp 7
Câu hỏi Lớp 7
Bạn muốn hỏi điều gì?
Giả sử tồn tại các số thực a;b;c đôi một phân biệt thỏa mãn
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{a}{a^2+9}=\dfrac{b}{b^2+9}=\dfrac{c}{c^2+9}=\dfrac{a-b}{a^2-b^2}=\dfrac{a-c}{a^2-c^2}=\dfrac{1}{a+b}=\dfrac{1}{a+c}\)
\(\Rightarrow a+b=a+c\Rightarrow b=c\) (mâu thuẫn giả thiết b,c phân biệt)
Vậy điều giả sử là sai, hay ko tồn tại 3 số thực a;b;c phân biệt thỏa mãn yêu cầu