Chứng minh rằng: 2222^5555 + 5555^2222 chia hết cho 7
Chào cả nhà, mình đang gặp chút vấn đề khó khăn và thực sự cần sự giúp đỡ của mọi người. Ai biết chỉ giúp mình với nhé!
Các câu trả lời
Câu hỏi Toán học Lớp 7
- Cho tam giác ABC có góc ABC = 50 độ ; góc BAC = 70 độ . Phân giác trong góc ACB cắt AB tại M . Trên MC lấy điểm N sao...
- tính giá trị biểu thức: 1/3 + (1/3)2 + ( 1/3)3 + ( 1/3)4 + (1/3)5 + (1/3)6 + (1/3)7
- cho tam giác ABC vuông tại A . Gọi D là điểm thuộc cạnh bc sao cho BD = BA và H là...
- Làm giề để có coin dợ mọi người
Câu hỏi Lớp 7
- các bn có hình anime nữ ngầu ko cho mk xin vài tấm
- kể về 1 kỉ niệm về thầy cô dưới mái trường các bạn giup mình viết dài 2 trang nhé
- Tệ nạn xã hội ảnh hưởng như thế nào đối với mỗi cá nhân gia đình và...
- 1 đo tốc dộ chạy của mình bằng đồng hồ bấm giây 2 tìm hiểu cách đo tốc dộ bằng gps 3...
- Kể tên một số rừng ở Việt Nam mà em biết. Chúng thuộc loại rừng nào (theo mục đích...
- Each year volunteers from England work abroad: teachers, nurses, engineers, and people with special skills. They do...
- câu 1: Em thường gặp ốc sên ở đâu? Khi bò ốc sên đế lại dấu vết trên lá như thế nào? Câu 2: Hãy nêu một số tập tính của...
- B) The president continuous tense: supply the correct verb form using the president continuous tense : 1: She(not work...
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Để chứng minh rằng \(2222^{5555} + 5555^{2222}\) chia hết cho 7, chúng ta có thể sử dụng định lý Fermat như sau:Theo định lý Fermat, ta biết rằng nếu \(a \equiv b \pmod{p}\) thì \(a^n \equiv b^n \pmod{p}\) với mọi số nguyên dương n (trong đó p là số nguyên tố và a, b là các số nguyên).Vì \(2222 \equiv 1 \pmod{7}\) và \(5555 \equiv 4 \pmod{7}\), ta có:\(2222^{5555} + 5555^{2222} \equiv 1^{5555} + 4^{2222} \equiv 1 + 2^{2222} \pmod{7}\)Ta thấy rằng \(2^3 \equiv 1 \pmod{7}\), từ đó suy ra \(2^{2220} \equiv 1 \pmod{7}\).Vậy \(2^{2222} \equiv 2^2 \equiv 4 \pmod{7}\).Do đó, \(2222^{5555} + 5555^{2222} \equiv 1 + 4 \equiv 5 \equiv 0 \pmod{7}\).Vậy ta kết luận rằng \(2222^{5555} + 5555^{2222}\) chia hết cho 7.
Ta có thể sử dụng phương pháp chứng minh bằng quy nạp. Bước cơ sở: 2222^2 + 5555^2 chia hết cho 7. Bước giả thiết: Giả sử 2222^k + 5555^k chia hết cho 7. Bước quy luật: Ta cần chứng minh 2222^(k+1) + 5555^(k+1) chia hết cho 7. Dựa vào giả thiết và sử dụng định lý binôm Newton, ta có thể chứng minh được bước quy luật này và từ đó suy ra 2222^5555 + 5555^2222 chia hết cho 7.
Ta có thể sử dụng tính chất của số chia hết cho 7. Để một số chia hết cho 7, tổng các chữ số của số đó phải chia hết cho 7. Với 2222^5555 và 5555^2222, ta sẽ tính tổng các chữ số của hai số này. Nếu tổng các chữ số của hai số đó chia hết cho 7, thì ta có thể kết luận rằng 2222^5555 + 5555^2222 chia hết cho 7.
Ta có thể sử dụng định lý Euler để chứng minh. Euler đã chứng minh rằng a^(phi(n)) ≡ 1 (mod n) với a và n nguyên tố cùng nhau. Trong trường hợp này, n = 7 là số nguyên tố. Vậy ta có 2222^(phi(7)) ≡ 1 (mod 7) và 5555^(phi(7)) ≡ 1 (mod 7). Từ đó, ta suy ra được 2222^5555 + 5555^2222 chia hết cho 7.
Ta sẽ chứng minh rằng 2222^5555 chia hết cho 7 và 5555^2222 chia hết cho 7. Với số mũ lớn như vậy, ta có thể áp dụng định lý Fermat nhỏ: a^p ≡ a (mod p) với p là số nguyên tố. Trong trường hợp này, 7 là số nguyên tố. Do đó, ta có 2222^6 ≡ 1 (mod 7) và 5555^6 ≡ 1 (mod 7). Từ đó, ta có thể chứng minh được 2222^5555 + 5555^2222 chia hết cho 7.