cho ΔABC cân tại A ( A<90o) kẻ BD vuông góc với AC tại D và CE vuông góc với AB tại E
a) chứng minh ΔABD = ΔACE
B) Trên tia đối của tia DB lấy điểm K sao cho BD=DK. Chứng minh: ΔBCK là tam giác cân.
c) Chứng minh: ED // BC từ đó suy ra EDB = DKC
Mình biết là mọi người đều bận rộn, nhưng nếu Bạn nào có thể sắp xếp chút thời gian để hỗ trợ mình giải đáp câu hỏi này, mình sẽ rất biết ơn.
Các câu trả lời
Câu hỏi Toán học Lớp 7
Câu hỏi Lớp 7
Bạn muốn hỏi điều gì?
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC
b: Xét ΔCDB vuông tại D và ΔCDK vuông tại D có
CD chung
DB=DK
Do đó: ΔCDB=ΔCDK
=>CB=CK
=>ΔCBK cân tại C
c:
Ta có: ΔADB=ΔAEC
=>AD=AE
Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
nên ED//BC
=>\(\widehat{EDB}=\widehat{DBC}\)
=>\(\widehat{EDB}=\widehat{DKC}\)