cho tam giác abc vuông tại a ( ab=ac) trên tia đối của ab lấy điểm d sao cho ab = ad a chứng minh tam giác abc = tam giác adc b trên cạnh bc lấy điểm e, trên cạnh dc lấy điểm f sao cho ce = cf chứng minh bf = de c) gọi g là trọng tâm tam giác bcd.gọi i là giao điểm của bf và de chứng minh ba điểm a g i thẳng hàng
Mọi người ơi, mình có một thắc mắc câu hỏi này khá khó và mình chưa tìm ra lời giải. Có ai có thể giúp mình giải đáp được không?
Các câu trả lời
Câu hỏi Toán học Lớp 7
Câu hỏi Lớp 7
Bạn muốn hỏi điều gì?
a: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
Do đó: ΔABC=ΔADC
b: Xét ΔCFB và ΔCED có
CF=CE
\(\widehat{FCB}\) chung
CB=CD
Do đó: ΔCFB=ΔCED
=>BF=DE
c: ΔCFB=ΔCED
=>CB=CD
=>ΔCBD cân tại C
Ta có: ΔCBD cân tại C
mà CG là đường trung tuyến
nên CG là đường trung trực của BD(1)
Ta có: CF+FD=CD
CE+EB=CB
mà CF=CE và CD=CB
nên FD=EB
Xét ΔFDB và ΔEBD có
FD=EB
BD chung
FB=ED
Do đó: ΔFDB=ΔEBD
=>\(\widehat{IBD}=\widehat{IBD}\)
=>IB=ID
=>I nằm trên đường trung trực của BD(2)
Từ (1),(2) suy ra A,G,I thẳng hàng