Bài 3 (3 điểm). Cho tam giác OAB vuông tại O, có OA>OB. Lấy điểm M thuộc cạnh AB. Kẻ đường thẳng vuông góc với AB tại M và cắt OA tại N, cắt tia BO tại E. Tia BN cắt AE tại F. a) Chứng minh: AOAB • AMEB b) Chứng minh: AN. AO= AM. AB c) Chứng minh: AOM = NBA. Từ đó chứng minh OA là tia phân giác FOM. Lưu
Mình đang vướng một chút rắc rối và cần người giúp đỡ. Nhờ mọi người hãy lan tỏa bác ái của mình và giúp đỡ mình trả lời câu hỏi trên mới ạ!
Các câu trả lời
Câu hỏi Toán học Lớp 8
Câu hỏi Lớp 8
Bạn muốn hỏi điều gì?
a: Xét ΔBME vuông tại M và ΔBOA vuông tại O có
\(\widehat{MBE}\) chung
Do đó: ΔBME~ΔBOA
b: Xét ΔAMN vuông tại M và ΔAOB vuông tại O có
\(\widehat{MAN}\) chung
Do đó: ΔAMN~ΔAOB
=>\(\dfrac{AM}{AO}=\dfrac{AN}{AB}\)
=>\(AM\cdot AB=AN\cdot AO\)
c: \(\dfrac{AM}{AO}=\dfrac{AN}{AB}\)
=>\(\dfrac{AM}{AN}=\dfrac{AO}{AB}\)
Xét ΔAMO và ΔANB có
\(\dfrac{AM}{AN}=\dfrac{AO}{AB}\)
\(\widehat{MAO}\) chung
Do đó: ΔAMO~ΔANB
=>\(\widehat{AOM}=\widehat{ABN}\)
Xét ΔAEB có
AO,EM là các đường cao
AO cắt EM tại N
Do đó: N là trực tâm của ΔAEB
=>BN\(\perp\)AE tại F
Xét ΔAFN vuông tại F và ΔAOE vuông tại O có
\(\widehat{FAN}\) chung
Do đó: ΔAFN~ΔAOE
=>\(\dfrac{AF}{AO}=\dfrac{AN}{AE}\)
=>\(\dfrac{AF}{AN}=\dfrac{AO}{AE}\)
Xét ΔAFO và ΔANE có
\(\dfrac{AF}{AN}=\dfrac{AO}{AE}\)
\(\widehat{FAO}\) chung
Do đó: ΔAFO~ΔANE
=>\(\widehat{AOF}=\widehat{AEN}\)
mà \(\widehat{AOM}=\widehat{ABN}\)
và \(\widehat{AEN}=\widehat{ABN}\left(=90^0-\widehat{FAB}\right)\)
nên \(\widehat{AOF}=\widehat{AOM}\)
=>OA là phân giác của góc FOM