Cho tam giac ABC nội tiếp đường tròn (O), các đường cao BD và CE cắt nhau tại H và cắt đường tròn (O) lần lượt tại M và N. Chứng minh rằng:
a) Tứ giác BEDC nội tiếp.
b) DE song song với MN.
c) OA vuông góc với DE.
d) Khi BC và (O) cố định. Chứng minh rằng khi A chuyển động trên cung lớn BC sao cho tam giac ABC là tam giác nhọn thì bán kính đường tròn ngoại tiếp tam giac ADE không đổi.
Xin chào mọi người, mình đang bí câu trả lời cho một vấn đề khó nhằn này. Bạn nào có thể giúp mình với được không?
Các câu trả lời
Câu hỏi Toán học Lớp 9
Câu hỏi Lớp 9
Bạn muốn hỏi điều gì?
a: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
b: Xét (O) có
\(\widehat{CNM}\) là góc nội tiếp chắn cung CM
\(\widehat{CBM}\) là góc nội tiếp chắn cung CM
Do đó: \(\widehat{CNM}=\widehat{CBM}\)
mà \(\widehat{CBM}=\widehat{CED}\)(BEDC nội tiếp)
nên \(\widehat{HED}=\widehat{HNM}\)
=>ED//MN
c: Kẻ Ax là tiếp tuyến của (O) tại A
Xét (O) có
\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{xAC}=\widehat{ABC}\)
mà \(\widehat{ABC}=\widehat{ADE}\left(=180^0-\widehat{EDC}\right)\)
nên \(\widehat{xAC}=\widehat{ADE}\)
=>Ax//DE
=>OA\(\perp\)DE