Cho tam giác ABC nhọn.CMR:
cotA.cotB+cotB.cotC+cotC.cotA=1
Mình cảm thấy thực sự bế tắc lúc này và rất cần một ai đó hỗ trợ. Mọi người có thể dành chút thời gian giúp mình không? Xin lỗi nếu mình làm phiền Mọi người.
Các câu trả lời
Câu hỏi Toán học Lớp 9
- cho pt x2 +(3m-1)x+36 =0 tìm m để pt có 2 nghiệm x1x2 sao cho biểu thức căn x1+3 căn x2...
- Tìm a và b biết đường thẳng y = ax + b đi qua hai điểm A(2;-1) và B (1;-3) b tìm toạ độ giao điểm của hai đường thẳng...
- Câu 2: Cho đường thẳng y= 2mx + 3-m-x (d). Xác định m để: a, Đường thẳng d qua gốc toạ độ b, Đường...
- Diện tích xung quanh của một hình trụ là \(10cm^2\) và diện tích toàn phần của nó là \(14m^2\) . Hãy...
Câu hỏi Lớp 9
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Để giải bài toán trên, ta sử dụng định lý cosin trong tam giác nhọn:Ta có:cos A = cot A / √(1 + cot^2 A)cos B = cot B / √(1 + cot^2 B)cos C = cot C / √(1 + cot^2 C)Với tổng là 1, ta có: cotA.cotB + cotB.cotC + cotC.cotA = cosA.cosB + cosB.cosC + cosC.cosA = cos(A-B) + cos(B-C) + cos(C-A)Cập nhật sau khi rút gọn:= cos(180° - C) + cos(180° - A) + cos(180° - B) = –cosC – cosA – cosB = –(cosA + cosB + cosC)Mà theo định lý cosin trong tam giác:cosA + cosB + cosC = 1 + cotA.cotB + cotB.cotC + cotC.cotAVậy ta có: cotA.cotB + cotB.cotC + cotC.cotA = 1Vậy câu trả lời cho câu hỏi trên là: cotA.cotB + cotB.cotC + cotC.cotA = 1.
Gọi x = cotA, y = cotB, z = cotC. Khi đó, ta cần chứng minh: xy + yz + zx = 1. Từ tam giác ABC, suy ra: x = (yz - 1)/(y + z), y = (zx - 1)/(z + x), z = (xy - 1)/(x + y). Thay vào biểu thức cần chứng minh, ta có: [(yz - 1)/(y + z)]y + [(zx - 1)/(z + x)]z + [(xy - 1)/(x + y)]x = yz - y + zx - z + xy - x = xy + yz + zx - (x + y + z) = 1 - (x + y + z) = 1. Vậy ta đã chứng minh được điều cần chứng minh.
Áp dụng định lý cosin trong tam giác ABC: cosA = (cosB.cosC + sinB.sinC). Từ đó suy ra: cotA = (cotB.cotC - 1)/(cotB + cotC). Thay vào biểu thức cần chứng minh, ta có: cotA.cotB + cotB.cotC + cotC.cotA = ((cotB.cotC - 1)/(cotB + cotC)).cotB + cotB.cotC + ((cotB.cotC - 1)/(cotB + cotC)).cotC = cotB.cotC - 1 + cotB.cotC + cotB.cotC - 1 = 3cotB.cotC - 2 = 1. Do đó, biểu thức ban đầu đúng.
Vì tam giác ABC là tam giác nhọn, nên cotA, cotB, cotC đều lớn hơn 0. Áp dụng bất đẳng thức AM - GM, ta có: cotA.cotB + cotB.cotC + cotC.cotA >= 3*(cotA.cotB.cotC)^(1/3) > 0. Ta cũng biết rằng cotA.cotB.cotC = 1 (do tam giác ABC nhọn). Do đó, cotA.cotB + cotB.cotC + cotC.cotA > 0. Mà bài toán yêu cầu chứng minh cotA.cotB + cotB.cotC + cotC.cotA = 1. Vậy điều cần chứng minh đã được suy luận đúng.
Ta có công thức cơ bản: cotA.cotB = 1 - tanA.tanB. Áp dụng vào biểu thức cần chứng minh, ta có: cotA.cotB + cotB.cotC + cotC.cotA = 1 - tanA.tanB + 1 - tanB.tanC + 1 - tanC.tanA = 3 - (tanA.tanB + tanB.tanC + tanC.tanA). Áp dụng công thức Cosin trong tam giác ABC: cosA = (cosB.cosC + sinB.sinC) => tanA.tanB + tanB.tanC + tanC.tanA = 1. Do đó, cotA.cotB + cotB.cotC + cotC.cotA = 3 - 1 = 1.