cho tam giác abc đều có độ dài cạnh AB=6 cm.tính độ dài các đoạn thẳng BC,CA ?
MÌNH CẦN GẤP
Mọi người ơi, mình đang vướng mắc một chút, có ai có kinh nghiệm có thể chỉ giáo mình cách giải quyết câu hỏi này không?
Các câu trả lời
Câu hỏi Toán học Lớp 6
- GIẢI HỘ TUI HAI BÀI...
- 2 lít = dm3
- Tổ 1 của lớp 6B được nhận phần thưởng của cô giáo chủ nhiệm và mỗi em được nhận phần thưởng như nhau. Cô giáo chủ...
- Một cô nhân viên đánh máy liên tục dãy số bắt đầu từ 1,2,3,4, .... 2089. Hỏi cô đã gõ bao nhiêu chữ số? A. ...
- Cho 3 đường thẳng m,a,b đồng quy tại O; 3 đường thẳng n,a,b cũng đồng quy. a) chứng minh rằng cả 4 đường thẳng m,n,a,b...
- Bài 1: Tìm x A) ( 2x +1 )^3 = 9.81 B) (7x - 11) ^3= 2^5.5^2+200 Bài 2 : Thực hiện phép tính a )50-[30...
- tính bằng cách hợp lí ...
- 1. TÌM X : 10+3.(x-6)=5^10:5^8 2.TÍNH A,100-[150-8.(7-4)^2] B,(-999)+[(-23)+999]-[1...
Câu hỏi Lớp 6
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Để giải bài toán này, ta có thể sử dụng định lí cosin trong tam giác đều. Phương pháp giải 1:Đặt \(x\) là độ dài cạnh BC và \(y\) là độ dài cạnh CA.Ta có:\(AB = BC = CA = 6\) cm (do tam giác đều)Áp dụng định lí cosin trong tam giác \(ABC\):\(AB^2 = BC^2 + AC^2 - 2 \cdot BC \cdot AC \cdot \cos 60^{\circ} \)\(6^2 = x^2 + y^2 - 2 \cdot x \cdot y \cdot \cos 60^{\circ}\)\(36 = x^2 + y^2 - xy = x^2 + y^2 - 6y\)Vì tam giác ABC đều nên ta có \(x = y\).Thay \(x\) bằng \(y\) vào phương trình trên ta được:\(36 = 2y^2 - 6y\)\(2y^2 - 6y - 36 = 0\)Giải phương trình trên ta được \(y = 6\) hoặc \(y = -3\). Vì độ dài cạnh không thể âm nên ta chọn \(y = 6\) cm.Suy ra \(x = 6\) cm.Vậy độ dài cạnh BC và CA lần lượt là 6 cm.Phương pháp giải 2:Vì tam giác ABC đều nên ta có góc giữa các cạnh bằng \(60^\circ\).Ta sử dụng công thức tính cạnh của tam giác đều: \(a = \frac{2}{\sqrt{3}} \cdot R\) với \(R\) là bán kính đường tròn ngoại tiếp tam giác.Do tam giác ABC đều nên ta có bán kính đường tròn ngoại tiếp bằng \(\frac{AB}{\sqrt{3}} = \frac{6}{\sqrt{3}} = 2\sqrt{3}\) cm.\(BC = 2 \cdot \frac{2\sqrt{3}}{\sqrt{3}} = 4\) cm\(CA = 2 \cdot \frac{2\sqrt{3}}{\sqrt{3}} = 4\) cmVậy độ dài các đoạn thẳng BC và CA lần lượt là 4 cm.
Áp dụng định lý Pifagor trong tam giác đều, ta có: BC = CA = AB√2 = 6√2 cm.
Do tam giác đều nên ta có: BC = CA = AB = 6 cm.
Với tam giác abc đều, các đường trung tuyến cũng là đường cao, nên CA cũng bằng 6 cm.
Theo định lý cosin trong tam giác đều, ta có: BC = AB* √3 = 6√3 cm.