Cho tam giác ABC có AB = AC, kẻ AH vuông góc với BC (H ∈ BC)
a) Chứng minh △AHB = △AHC và AH là tia phân giác của BAC
b) Từ H kẻ đường thẳng song song với AC, cắt AB tại D. Chứng minh △ADH là tam giác cân
c) Gọi G là giao của CD và AH. Chứng minh G là trọng tâm △ABC
Bao gồm cả vẽ hình
Bạn nào ở đây biết về cái này có thể giúp mình một chút không? Mình đang cực kỳ cần sự hỗ trợ!
Các câu trả lời
Câu hỏi Toán học Lớp 7
Câu hỏi Lớp 7
Bạn muốn hỏi điều gì?
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giáccủa góc BAC
b: Ta có: \(\widehat{DHA}=\widehat{HAC}\)(DH//AC)
\(\widehat{DAH}=\widehat{HAC}\)(AH là phân giác của góc BAC)
Do đó: \(\widehat{DHA}=\widehat{DAH}\)
=>ΔDAH cân tại D
c: Ta có: \(\widehat{DAH}+\widehat{DBH}=90^0\)(ΔAHB vuông tại H)
\(\widehat{DHA}+\widehat{DHB}=\widehat{AHB}=90^0\)
mà \(\widehat{DAH}=\widehat{DHA}\)
nên \(\widehat{DBH}=\widehat{DHB}\)
=>DB=DH
=>DB=DA
=>D là trung điểm của AB
ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
Xét ΔABC có
AH,CD là các đường trung tuyến
AH cắt CD tại G
Do đó: G là trọng tâm của ΔABC