Cho tam giác ABC. CMR:
1. Với M tùy ý thì aMA2+bMB2+cMC2≥abc
2. 2(a+b+c)(a2+b2+c2) ≥3 (a3+b3+c3+3abc)
Có vẻ như mình đã gặp bế tắc rồi. Mọi người có thể dành chút thời gian để giúp đỡ mình không?
Các câu trả lời
Câu hỏi Toán học Lớp 10
- Viết phương trình hình chữ nhật cơ sở của Elip x2/1 + y2/2/3 = 1 Giúp mình với ạ
- Trong bản vẽ thiết kế, vòm của ô thoáng trong hình bên là nửa nằm phía...
- cho lục giác đều ABCDEF có tâm O . chứng minh rằng : a,...
- Biết rằng parabol (P): y= ax2+bx-7 đi qua điểm A(-1;-6) và có trục đối xứng X=\(-\frac{1}{3}\) . Tính giá trị của biểu...
- Một đơn vị thiên văn xấp xỉ bằng 1,496.108 km. Một trạm vũ trụ di chuyển với vận tốc trung bình là 15000 m/s. Hỏi...
- Bài 1. (1,0 điểm ) Vẽ đồ thị hàm số $y=x^{2}-4 x+3$.
- Trong mặt phẳng Oxy,cho hai điểm A(2;5); B(5;1) và đường thẳng (Δ):3x+4y-1=0 a)Viết phương trình...
- có 4 sách toán, 3 sách lí, 3 sách hoá được xếp trên một...
Câu hỏi Lớp 10
- ai rảnh làm kh ạ ^^' em cảm ơn trước Exercise 1: Complete the sentences with relative pronoun: who,...
- Viết đoạn văn nghị luận về lòng tự trọng
- Vinasat-1 là vệ tinh viễn thông địa tĩnh (có vị trí cố định trong không gian so với...
- Trong chuyển động của các loài vật sau đây, chuyển động nào là chuyển động bằng phản...
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
1. Ta sẽ chứng minh dựa trên các kết quả quen thuộc sau về tâm I của đường tròn nội tiếp tam giác:
\(a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=\overrightarrow{0}\)
Và: \(a.IA^2+b.IB^2+c.IC^2=abc\)
Đẳng thức thứ nhất chỉ cần*** hình bình hành AMIN, sau đó sử dụng định lý phân giác các góc B và C.
Đẳng thức thứ hai ta chỉ cần lấy 1 điểm P nào đó đối xứng I qua AC, gọi D, E, F là tiếp điểm của (I) với BC, AC, AB, sau đó sử dụng tỉ lệ diện tích:
\(\dfrac{S_{AEIF}}{S_{ABC}}=\dfrac{S_{AIK}}{S_{ABC}}=\dfrac{AI.AK}{AB.AC}=\dfrac{IA^2}{bc}\)
Tương tự và cộng lại ...
Từ đó:
\(a.MA^2+b.MB^2+c.MC^2=a.\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2+b\left(\overrightarrow{MI}+\overrightarrow{IB}\right)^2+c.\left(\overrightarrow{MI}+\overrightarrow{IC}\right)^2\)
\(=\left(a+b+c\right)MI^2+a.IA^2+b.IB^2+c.IC^2+2\overrightarrow{MI}\left(a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}\right)\)
\(=\left(a+b+c\right)MI^2+abc\ge abc\)
Dấu "=" xảy ra khi \(MI=0\) hay M là tâm đường tròn nội tiếp