cho biểu thức E= 3-x/x-1.tìm các giá trị nguyên của x để:
a) E có giá trị nguyên
b) E có giá trị nhỏ nhất
Xin lỗi mọi người đã làm phiền, nhưng mình thật sự cần sự giúp đỡ. Ai có thể dành chút thời gian để trả lời câu hỏi mình đang mắc phải không?
Các câu trả lời
Câu hỏi Toán học Lớp 7
Câu hỏi Lớp 7
Bạn muốn hỏi điều gì?
a: ĐKXĐ: x<>1
Để E là số nguyên thì \(3-x⋮x-1\)
=>\(x-3⋮x-1\)
=>\(x-1-2⋮x-1\)
=>\(-2⋮x-1\)
=>\(x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{2;0;3;-1\right\}\)
b: \(E=\dfrac{3-x}{x-1}=\dfrac{-\left(x-3\right)}{x-1}=\dfrac{-\left(x-1-2\right)}{x-1}=-1+\dfrac{2}{x-1}\)
Để E min thì x-1=-1
=>x=0