Mời thí sinh CLICK vào liên kết hoặc ảnh bên dưới
Mở ứng dụng Shopee để tiếp tục làm bài thi
https://s.shopee.vn/AKN2JyAJAw
https://s.shopee.vn/AKN2JyAJAw
kinhthu.com và đội ngũ nhân viên xin chân thành cảm ơn!
Cho 5 số tự nhiên phân biệt sao cho tổng của ba số bất kì trong chúng lớn hơn tổng của hai số còn lại. Chứng minh rằng tất cả 5 số đó đều không nhỏ hơn 5.
Mình biết là mọi người đều bận rộn, nhưng nếu Bạn nào có thể sắp xếp chút thời gian để hỗ trợ mình giải đáp câu hỏi này, mình sẽ rất biết ơn.
Các câu trả lời
Câu hỏi Toán học Lớp 9
- Tìm x,y trong hình vẽ
- Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O) có 3 đường cao AD, BE, CF cắt nhau tại...
- Một chợ dân sinh chuẩn bị được đưa vào hoạt động. Nếu mỗi gian hàng của chợ này cho...
- Cho hàm số: y=2x^2 (P). Viết phương trình đường thẳng đi qua điểm (0;-2) và tiếp xúc với (P)
- Có bạn nào học ở trường thcs thanh quan không? cho mình hỏi bài hình câu c, d đề KHẢO SÁT THÁNG 5 LỚP 9 TRƯỜNG THCS...
- Chứng minh đẳng thức A = √28 - √7 + √2 × √8-3√7 = 3
- cho d1: y=2x+4-m d2: y=3x+m-2 a ) tìm m để d1 cắt d2 tại 1 điểm năm trên trục tung b) tìm m để...
- bài 3 Rút gọn các biểu thức sau a) A= sin4a - cos4a +2sin2a . cos2a
Câu hỏi Lớp 9
- cho các chất sau đây SO2, SO3, P2O5, CuO, MgO, Na2O, Ba(OH)2, Zn(OH)2, HCl, H2O,CuSO4, KCl. Cặp chất...
- Hãy lập dàn ý chi tiết hoặc vẽ sơ đồ tư duy để trình bày ý kiến về vấn đề...
- CHUYỆN NGƯỜI CON GÁI NAM XƯƠNG Các em đọc văn bản “Chuyện người con gái Nam Xương”...
- Câu 1: (6.0 điểm): Trong bài thơ “Ánh trăng”, Nguyễn Duy viết: “Ngửa mặt lên nhìn mặt có cái gì rưng rưng như...
- Hai câu “Nghệ thuật nói nhiều với tư tưởng nữa, nghệ thuật không thể nào thiếu tư tưởng. Không tư tưởng, con người có...
- Phân biệt thường biến với đột biến-Khái niệm thường biến Giúp mình với plss
- 19 tom told us i do not understand what you are saying tom told... 20 whch way did thay go he asked me he...
- Nghị luận về bài thơ "Bếp lửa" của Bằng Việt.
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Cách 4: Giả sử các số là a, b, c, d, e. Ta có thể giả sử a < b < c < d < e để thỏa mãn điều kiện số tự nhiên phân biệt. Ta biết rằng a + d + e > a + e > a + b, a + c + e > a + e > a + b và a + c + d > a + d > a + b. Từ đó suy ra a + d + e > a + b, a + c + e > a + b và a + c + d > a + b. Điều này đồng nghĩa với việc tổng của ba số bất kỳ trong chúng lớn hơn tổng của hai số còn lại. Giả sử a >= 5. Khi đó a + b >= 5 + 6 = 11, a + c >= 5 + 7 = 12, a + d >= 5 + 8 = 13 và a + e >= 5 + 9 = 14. Nhưng tổng của ba số bất kỳ phải lớn hơn tổng của hai số còn lại, điều này mâu thuẫn với giả sử ta đặt ra. Do đó, ta kết luận là a < 5. Tương tự, ta có thể chứng minh b < 5, c < 5, d < 5 và e < 5. Vì vậy, tất cả 5 số đều không nhỏ hơn 5.
Cách 3: Giả sử các số là a, b, c, d, e. Ta có thể giả sử a < b < c < d < e để thỏa mãn điều kiện số tự nhiên phân biệt. Giả sử a < 5. Từ đó ta có a + b < 5 + 6 = 11, a + c < 5 + 7 = 12, a + d < 5 + 8 = 13 và a + e < 5 + 9 = 14. Ta biết rằng a + d + e > a + e > a + b, a + c + e > a + e > a + b và a + c + d > a + d > a + b. Nhưng theo giả sử, ta có a + d + e < 13 và a + c + e < 14. Điều này mâu thuẫn với việc tổng của ba số bất kỳ trong chúng phải lớn hơn tổng của hai số còn lại. Do đó, ta có khẳng định là a >= 5. Tương tự, ta có thể chứng minh b >= 5, c >= 5, d >= 5 và e >= 5. Vì vậy, tất cả 5 số đều không nhỏ hơn 5.
Cách 2: Giả sử các số là a, b, c, d, e. Ta có thể giả sử a < b < c < d < e để thỏa mãn điều kiện số tự nhiên phân biệt. Ta có thể sắp xếp các số theo thứ tự từ bé đến lớn: a, b, c, d, e. Giả sử a <= 4, từ đó ta có a + b <= 4 + 5 = 9 và a + c <= 4 + 6 = 10. Nhưng ta đã biết rằng a + d + e > a + e > a + b và a + c + e > a + e > a + b. Điều này đồng nghĩa với việc a + d + e > 9 và a + c + e > 10. Tuy nhiên, điều này mâu thuẫn với việc tổng của ba số bất kỳ trong chúng phải lớn hơn tổng của hai số còn lại. Do đó, giả sử a <= 4 không hợp lệ. Tương tự, ta có thể chứng minh với các giả sử a <= 3, a <= 2 và a <= 1. Kết quả cuối cùng là tất cả 5 số đều không nhỏ hơn 5.
Cách 1: Giả sử các số là a, b, c, d, e. Ta có thể giả sử a < b < c < d < e để thỏa mãn điều kiện số tự nhiên phân biệt. Một cách tổng quát, ta có a + b < a + c < a + d < a + e < b + c < b + d < b + e < c + d < c + e < d + e. Do đó, ta có a + d + e > a + e > a + b, a + c + e > a + e > a + b và a + c + d > a + d > a + b. Từ đó, ta có thể thấy rằng a > b. Tương tự, ta có e + c + a > b + c > b + d và e + d + a > b + d > b + c, từ đó suy ra e > c và e > d. Kết hợp với a > b, ta có kết quả cuối cùng là a > b > c > d > e. Vì a, b, c, d, e là số tự nhiên phân biệt, nên tất cả đều không nhỏ hơn 5.
Phương pháp giải:Ta giả định ngược lại rằng có một số trong 5 số đó nhỏ hơn hoặc bằng 4. Vì có 5 số tự nhiên phân biệt, ta gọi số này là a và các số còn lại lần lượt là b, c, d, e.Giả sử a ≤ 4, ta có các trường hợp sau:- Nếu a = 1, ta có tổng 1 + b + c ≤ 9, tổng b + c + d > 8, tổng c + d + e > 8, tổng b + c + e > 8, tổng b + d + e > 8. Như vậy, tổng của một bộ 3 số bất kì trong 5 số này không lớn hơn tổng của 2 số còn lại.- Tương tự, ta chứng minh quy luật trên đối với a = 2, 3, 4.Như vậy, giả thiết ban đầu sai, tức là tất cả 5 số đều không nhỏ hơn 5.Câu trả lời: Tất cả 5 số đều không nhỏ hơn 5.