Cho 3 số thực dương x, y, z thoả mã điều kiện:\(x^2\ge y^2+z^2\)
Tìm giá trị nhỏ nhất của biểu thức
\(P=\dfrac{1}{x^2}\left(y^2+z^2\right)\) \(+x^2\left(\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)+2019\)
Mình đang vướng một chút rắc rối và cần người giúp đỡ. Nhờ mọi người hãy lan tỏa bác ái của mình và giúp đỡ mình trả lời câu hỏi trên mới ạ!
Các câu trả lời
Câu hỏi Toán học Lớp 9
Câu hỏi Lớp 9
Bạn muốn hỏi điều gì?
\(x^2\ge y^2+z^2\Rightarrow\dfrac{x^2}{y^2+z^2}\ge1\)
\(P=\dfrac{y^2+z^2}{x^2}+x^2\left(\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)+2019\ge\dfrac{y^2+z^2}{x^2}+x^2.\dfrac{4}{y^2+z^2}+2019\)
\(P\ge\dfrac{y^2+z^2}{x^2}+\dfrac{x^2}{y^2+z^2}+3\dfrac{x^2}{y^2+z^2}+2019\)
\(P\ge2\sqrt{\dfrac{y^2+z^2}{x^2}.\dfrac{x^2}{y^2+z^2}}+3.1+2019=2024\)
\(P_{min}=2024\) khi \(x^2=2y^2=2z^2\)