Mời thí sinh CLICK vào liên kết hoặc ảnh bên dưới
Mở ứng dụng Shopee để tiếp tục làm bài thi
https://s.shopee.vn/AKN2JyAJAw
https://s.shopee.vn/AKN2JyAJAw
kinhthu.com và đội ngũ nhân viên xin chân thành cảm ơn!
Khai triển hằng đẳng thức \(a^4+b^4\)
Xin lỗi nếu mình làm phiền, nhưng mình đang mắc kẹt với câu hỏi này và mình thật sự cần một ai đó giúp đỡ. Mọi người có thể dành chút thời gian để hỗ trợ mình được không?
Các câu trả lời
Câu hỏi Toán học Lớp 8
- Cho hình thang $ABCD$ ($AB$ // $CD$). Đường thẳng song song với $AB$ cắt $AD$, $BD$, $AC$ và $BC$ theo thứ...
- Cho tam giác ABC vuông tại A có AB <AC, đường cao AH, H thuộc BC. a) Chứng minh rằng tam...
- Bài 1. (2 điểm) 1. Cho đa thức $P=2{{x}^{2}}y-3x+8{{y}^{2}}-1$ a) Xác định bậc, các hạng tử của...
- Cho tam giác ABC cân tại A, đường cao BH. Từ điển M trên cạnh BC kẻ MP vuông góc AB, MQ vuông góc AC. CMR MP+MQ=BH
Câu hỏi Lớp 8
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Để khai triển hằng đẳng thức \(a^4+b^4\), chúng ta có thể sử dụng công thức khai triển tổng lũy thừa của một binomial bậc 4, hay còn được gọi là công thức Newton.
Công thức Newton cho khai triển tổng lũy thừa của binomial \( (x+y)^n \) có dạng:
\[ (x+y)^n = \binom{n}{0}x^n y^0 + \binom{n}{1}x^{n-1}y^1 + \binom{n}{2}x^{n-2}y^2 + \ldots + \binom{n}{n-1}x^1y^{n-1} + \binom{n}{n}x^0 y^n \]
Áp dụng công thức Newton vào \(a^4+b^4\), ta có:
\[ (a+b)^4 = \binom{4}{0}a^4 b^0 + \binom{4}{1}a^3 b^1 + \binom{4}{2}a^2 b^2 + \binom{4}{3}a^1 b^3 + \binom{4}{4}a^0 b^4 \]
\[ = a^4 + 4a^3 b + 6a^2 b^2 + 4ab^3 + b^4 \]
Vậy, \(a^4+b^4 = (a+b)^4 - 4a^3 b - 6a^2 b^2 - 4ab^3\).
Đây là cách giải bằng công thức Newton. Ngoài ra, ta còn có thể giải bằng cách sử dụng công thức khai triển tổng lũy thừa của binomial bậc 2 liên kết với công thức khai triển tổng lũy thừa của binomial bậc 2 một lần nữa.
Để khai triển \(a^4+b^4\), ta áp dụng công thức khai triển tổng lũy thừa của một số:
Cách 1:
\(a^4+b^4\) = \((a^2)^2+(b^2)^2\) = \(a^2 \cdot a^2 + b^2 \cdot b^2\) = \((a^2+b^2)(a^2+b^2)\) = \((a^2+b^2)^2\)
Cách 2:
\(a^4+b^4\) = \((a^2)^2+(b^2)^2\) = \((a^2+b^2)^2 - 2a^2b^2\)
Cách 3:
\(a^4+b^4\) = \((a^2)^2+(b^2)^2\) = \((a^2 - 2ab + b^2)(a^2 + 2ab + b^2)\)
Cách 4:
\(a^4+b^4\) = \((a^2)^2+(b^2)^2\) = \((a^2 + b^2 - 2ab)(a^2 + b^2 + 2ab)\)
Câu trả lời được viết dạng JSON:
{
"content1": "(a^2+b^2)^2",
"content2": "(a^2+b^2)^2 - 2a^2b^2",
"content3": "(a^2 - 2ab + b^2)(a^2 + 2ab + b^2)",
"content4": "(a^2 + b^2 - 2ab)(a^2 + b^2 + 2ab)"
}