Tính A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ............. + 1/ 98.99.100
Uyên ương hữu tình, giúp đỡ một tay để mình không trôi dạt với câu hỏi khó nhằn này được không?
Các câu trả lời
Câu hỏi Toán học Lớp 6
- giải bài 14 đến bài 22 trang 124 ,125 - sách bái tập toán 6 tập 1 các bạn giúp mik nhé tạm...
- Tìm một số chính phương có 5 chữ số. Trong đó chỉ có một chữ số 5, một chữ số 7...
- (19-51)-(x-23)=-6 b-5x-10(-7)=55 c,-7-2x=-37-(-26) d,|2x-1|=|-5| e,2-|x+5|=7 h,(x+8)2=25 f,(x+3)3:3-1=-10
- Kết quả phân tích các số 120, 102 ra thừa số nguyên tố của Nam như sau: 120 = 2.3.4.5 ; 102 = 2.51 Theo...
Câu hỏi Lớp 6
- vừa bằng hạt đỗ ăn giỗ cả làng là con gì
- nêu 1 số bài học mà em rút ra trong cuộc sống từ câu chuyện hũ bạc của người cha bằng 1 đoạn văn ngắn có đọ dài 6-8 câu...
- tập đặt câu theo mô hình : c-v-v , c-c-v-v , c-c-v , t-t-c-v , t-c-t-v gợi ý:c: chủ ngữ, v:...
- Hãy viết một đoạn văn từ 150 đến 200 kể lại trải nghiệm của bản thân về buổi chợ Tết quê em. (Kết hợp giữa tự sự, miêu...
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Để tính tổng A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ............. + 1/ 98.99.100, ta có thể áp dụng một trong hai cách sau:Cách 1: Sử dụng phép toán tổng của dãy số hình họcChúng ta sẽ chia mẫu số của từng phân số thành 3 thành phần a, b, c:1/1.2.3 = 1/(1.2.3) = 1/(1*2*3) = 1/3! = 1/61/2.3.4 = 1/(2.3.4) = 1/(2*3*4) = 1/4! = 1/24...1/98.99.100 = 1/(98.99.100) = 1/(98*99*100) = 1/(98!) = 1/(98*97*...*1)Khi đó, ta có thể viết tổng A dưới dạng tổng của dãy số hình học:A = 1/6 + 1/24 + ... + 1/(98!)Cách 2: Sử dụng phương pháp tính tổng bằng cách giải hệ phương trình đạo hàmTa có thể chứng minh rằng tổng A có thể được tính bằng cách giải hệ phương trình đạo hàm của hàm số f(x) = 1/(x*(x+1)*(x+2)), sau đó tính giá trị f(1) đến f(98) và cộng lại.Câu trả lời:Tổng A = 1/6 + 1/24 + ... + 1/(98!) = ...Bạn cần tính tổng giá trị của các phân số và cộng lại để có kết quả cuối cùng.
Simplifying the expression, ta có A = 1/2 * (1 - 1/99) = 49/99.
Khi đó, tổng A có thể viết lại thành tổng của các phân số đơn giản: A = 1/2 * (1/1 - 1/2 + 1/2 - 1/3 + ... + 1/98 - 1/99).
Với mỗi phần tử, ta có thể viết lại dưới dạng phân số đơn giản: 1/(n(n+1)(n+2)) = 1/2 * (1/n - 1/(n+1)).
Để tính tổng A, ta chia mỗi phần tử trong dãy thành tử riêng biệt: 1/(n(n+1)(n+2)), với n chạy từ 1 đến 98.