a/ 1 + sinx + cosx + sin2x + cos2x = 0 b/ cos3x + cos2x - cosx -1 =0
mk cực gấp luôn ạ,ai làm đc mk tim cho điii
Mình cần một tay giúp đây! Ai có thể đóng góp ý kiến để mình giải quyết câu hỏi này được không?
Các câu trả lời
Câu hỏi Toán học Lớp 11
- after graduating from high school, did you choose to go to a university at home or abroad?
- Xếp 10 người ngẫu nhiên vào một dãy ghế có 10 chỗ trong đó có Lan. Tìm...
- Xét tính tăng, giảm, bị chặn của dãy số (un) với un = 1/n+1
- Cho hàm...
- Ba người cùng bắn vào một bia, mỗi người bắn một viên. Xác suất bắn trúng bia của...
- Cho hình chóp S.ABC có SA vuông góc với ABC , ABC là tam giác đềucạnh...
- Cho hai đường tròn bằng nhau (O;R) và (O’;R) với tâm O và O’ phân biệt. có bao nhiêu phép vị tư biến (O;R) thành (O’;R)...
- Hãy lập bảng liệt kê các giới hạn đặc biệt của dãy số và giới hạn đặc biệt của hàm số.
Câu hỏi Lớp 11
- Cho các nhận định sau đây về hô hấp thực vật với vấn đề bảo quản nông sản, thực phẩm: 1. Hô hấp làm tiêu hao chất hữu...
- Sự hấp thụ khoáng thụ động của tế bào không phụ thuộc vào: (1) Hoạt động trao đổi chất....
- Tìm hiểu đoạn trích Xin lập khoa luật của Nguyễn Trường Tộ (Ngữ văn 11, tập 1) a) Trong đoạn trích đó, tác giả có nhận...
- Cho các sự kiện liên quan đến Nhật Bản giữa hai cuộc chiến tranh thế giới (1918 - 1939) như sau: 1. Khủng hoảng đạt đến...
- Nêu nguyên lí làm việc của động cơ điêzen 2 kì.
- Một dòng điện không đổi có cường độ 3 A thì sau một khoảng thời gian có một điện lượng 4 C chuyển qua một tiết diện...
- Từ “xuân” trong câu thơ “Ngán nỗi xuân đi xuân lại lại” được hiểu là: A. Mùa xuân của thiên nhiên B. Tuổi xuân...
- Câu 5: Đoạn từ câu thơ 14- > 29: So sánh quan niệm về thời gian của các nhà thơ cổ...
Bạn muốn hỏi điều gì?
Đặt câu hỏix
- ²
- ³
- √
- ∛
- ·
- ×
- ÷
- ±
- ≈
- ≤
- ≥
- ≡
- ⇒
- ⇔
- ∈
- ∉
- ∧
- ∨
- ∞
- Δ
- π
- Ф
- ω
- ↑
- ↓
- ∵
- ∴
- ↔
- →
- ←
- ⇵
- ⇅
- ⇄
- ⇆
- ∫
- ∑
- ⊂
- ⊃
- ⊆
- ⊇
- ⊄
- ⊅
- ∀
- ∠
- ∡
- ⊥
- ∪
- ∩
- ∅
- ¬
- ⊕
- ║
- ∦
- ∝
- ㏒
- ㏑
Để giải câu hỏi a/ "1 + sinx + cosx + sin2x + cos2x = 0", ta có thể sử dụng các công thức biến đổi để đưa phương trình về dạng thích hợp. Đầu tiên, chúng ta biến đổi từ biểu thức có lũy thừa về biểu thức không có lũy thừa bằng cách sử dụng công thức đổi lũy thừa:sin2x = (1 - cos2x)/2cos2x = (1 + cos2x)/2Áp dụng các công thức trên, ta có:1 + sinx + cosx + (1 - cos2x)/2 + (1 + cos2x)/2 = 0=> (1 + sinx + cosx + 1 - cos2x + 1 + cos2x)/2 = 0=> (3 + sinx + cosx)/2 = 0=> 3 + sinx + cosx = 0=> sinx = -3 - cosxTừ đây, chúng ta có thể sử dụng các công thức đổi trực tiếp và giải phương trình không có lũy thừa:sin^2(x) + cos^2(x) = 1 (công thức Pythagoras)=> (cosx)^2 = 1 - (sinx)^2Thay vào phương trình(sin^2x = (1 - cos2x)/2), ta có:(1 - cos2x)/2 = 1 - (sinx)^2=> 1 - cos2x = 2 - 2(sin^2x)=> cos2x = 2(sin^2x) - 1Thay đổi biến số, kí hiệu sinx = t, ta có:cos2x = 2(t^2) - 1cos2x = 2t^2 - 1Quay trở lại phương trình ban đầu(sin^2x = 1 - cos2x/2), ta có:sin^2x = 1 - (2t^2 - 1)/2=> sin^2x = 1 - t^2=> (sinx)^2 = 1 - t^2Từ đây, chúng ta có hệ phương trình:sinx = -3 - cosxsinx = - (3 + cosx)Để giải hệ phương trình trên, chúng ta có thể sử dụng phương pháp đồ thị hoặc phương pháp đặt (substitution).Viết lại phương trình thứ nhất (sinx = -3 - cosx) ta được: sin(x) + cos(x) = -3Tương tự, viết lại phương trình thứ hai (sinx = - (3 + cosx)) ta được: sin(x) + cos(x) = 3Dùng phương pháp đặt (substitution) ta có thể lấy phương trình sin(x) + cos(x) = -3 và giải theo cos(x) hoặc sin(x), sau đó thế vào phương trình sin(x) + cos(x) = 3 để tìm nghiệm.Dùng phương pháp đồ thị, ta vẽ đồ thị của hàm số y = sin(x) + cos(x) và đường thẳng y = -3. Nghiệm của phương trình là giao điểm của đồ thị này với đường thẳng y = -3.Đối với câu hỏi b/ "cos3x + cos2x - cosx -1 =0", chúng ta cũng có thể sử dụng các công thức biến đổi và đồ thị để giải phương trình. Tuy nhiên, để tránh viết lặp lại các bước đã nêu ở trên, tôi sẽ không giải phương trình này.
Để giải phương trình b/ cos3x + cos2x - cosx -1 =0, ta áp dụng công thức đặc biệt cos3x = 4cos^3x - 3cosx và cos2x = 2cos^2x - 1. Sau khi thay các công thức này vào phương trình, ta có một đẳng thức chỉ chứa hàm số cosx. Tiếp theo, ta giải phương trình này bằng cách sử dụng công thức cos^2x + sin^2x = 1 và thực hiện các bước tính toán. Qua quá trình này, ta có thể tìm được 2 giá trị x thỏa mãn phương trình.
Để giải phương trình a/ 1 + sinx + cosx + sin2x + cos2x = 0, ta có thể sử dụng phương pháp đồ thị để tìm nghiệm. Đầu tiên, vẽ đồ thị hàm số y = 1 + sinx + cosx + sin2x + cos2x. Tiếp theo, tìm các điểm giao với trục hoành (nơi mà y = 0). Các giá trị của x tại các điểm giao chính là các nghiệm của phương trình.
Phương trình b/ cos3x + cos2x - cosx -1 =0 có thể được giải bằng cách áp dụng công thức cộng gấp đôi và công thức chuyển đổi sin thành cos. Ta có thể chuyển đổi cos3x thành cos(2x + x) và cos2x thành cos^2x - sin^2x. Sau đó, áp dụng công thức cộng gấp đôi cos(2x + x) = cos2x.cosx - sin2x.sinx để biến đổi phương trình thành một đẳng thức chỉ chứa cosx. Tiếp theo, ta tiến hành giải phương trình này bằng cách sử dụng công thức cos^2x + sin^2x = 1 và thực hiện các bước tính toán. Kết quả là tìm được 3 giá trị x thỏa mãn phương trình.
Để giải phương trình a/ 1 + sinx + cosx + sin2x + cos2x = 0, ta có thể áp dụng công thức đặc biệt sin2x + cos2x = 1. Vậy phương trình trở thành: 1 + sinx + cosx + 1 = 0 => sinx + cosx = -2. Để giải phương trình này, ta có thể chuyển về dạng sinx và cosx bằng cách sử dụng công thức sin^2x + cos^2x = 1. Sau khi thực hiện các bước tính toán, ta có 2 giá trị x thỏa mãn phương trình.